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Abstract. In this paper, we introduce the frame property of complex sequence sets
and study the uniform convergence of nonlinear mapping series in β-dual of spaces
consisting of multiplier convergent series.
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1. Introduction

Let K ∈ {R,C}, λ ⊆ C
N and (X, ‖ · ‖) be a Banach space over K. A series

∑∞
j=1 x j in X

is said to be λ-multiplier convergent if the series
∑∞

j=1 t j x j converges for each (t j ) ∈ λ.

For example, {0, 1}N-multiplier convergent is just the subseries convergent:
∑∞

k=1 x jk

converges for each j1 < j2 < · · · and l∞-multiplier convergent is just the bounded
multiplier convergent:

∑∞
j=1 t j x j converges for each bounded complex sequences (t j ),

where l∞ = {(t j ) ∈ C
N : sup j∈N |t j | < +∞}.

There are many results about multiplier convergent series, see, for example [1, 4, 6–8].
Now, we only list a famous one which is known as Orlicz–Pettis theorem [7]: a series∑∞

j=1 x j which is subseries convergent in the weak topology is actually subseries
convergent in the norm topology.

We denote the vector-valued sequence set consisting of λ-multiplier convergent
series by

MCλ(X) =
⎧
⎨

⎩
(x j ) ∈ XN :

∞∑

j=1

t j x j converges for each (t j ) ∈ λ

⎫
⎬

⎭
.

As we know, the study of β-dual of sequence spaces is an interesting topic in analysis
[2, 3, 6]. For topological vector space E , the β-dual of MCλ(X), which drop the linearity
restriction on mappings [2], is denoted by

MCλ(X)βE =
⎧
⎨

⎩
(A j )⊆ E X :

∞∑

j=1

A j (xj ) converges for each (x j )∈ MCλ(X)

⎫
⎬

⎭
.
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In this paper, we study an important problem on β-dual of spaces consisting of mul-
tiplier convergent series, that is, for mapping series (A j ) in β-dual of MCλ(X), we
determine the largest M ⊆ 2MCλ(X) for which

∑∞
j=1 A j (x j ) converges uniformly with

respect to (x j ) in any M ∈ M . Moreover, in the last section we give some applications
for mapping series.

2. The space of multiplier convergent series

First, we define the frame property of complex sequence set λ, which is important in
studying multiplier convergent series.

DEFINITION 2.1

The sequence set λ ∈ C
N is said to have the frame property, if there is a nonempty subset

λ0 ⊆ λ such that the following hold. Moreover, λ0 is said to be a frame subset of λ.

(1) For every integer sequences m1 < n1 < m2 < n2 < . . . and (tk j ) ∈ λ0, k ∈ N, there
exists a t0 ∈ C, define t j = tk j when mk ≤ j ≤ nk, k = 1, 2, . . ., and otherwise
t j = t0. Then (t j ) ∈ λ.

(2) For every (t j ) ∈ λ, there exist finitely many a1, a2, . . . , an ∈ K and (s1 j ), (s2 j ), . . . ,

(snj ) ∈ λ0, such that (t j ) = ∑n
i=1 ai (si j ).

(3) For every i ∈ N, there exists (ti j ) ∈ λ0 such that tii 	= 0.
(4) For every i ∈ N, there exists bi > 0 such that |ti | ≤ bi for all (t j ) ∈ λ0.

The following examples, which are related to the subseries convergent series
MC{0,1}N(X) and bounded multiplier convergent series MCl∞(X), indicate that {0, 1}N
and l∞ have the frame property:

Example 2.1. {0, 1}N ⊆ C
N is a frame subset of itself.

Example 2.2. Bl∞ = {(t j ) ∈ C
N : sup j∈N |t j | ≤ 1} is a frame subset of l∞.

If λ has a frame subset λ0, for each (x j ) ∈ MCλ(X), denote

‖(x j )‖λ0 = sup
(t j )∈λ0,n∈N

∥
∥
∥
∥
∥
∥

n∑

j=1

t j x j

∥
∥
∥
∥
∥
∥

.

Before the study of ‖ · ‖λ0 , we need a proposition of frame subset.

PROPOSITION 2.1

Let (x j ) ∈ XN. If λ has a frame subset λ0, and (x j ) ∈ MCλ(X). Then
∑∞

j=1 t j x j

converges uniformly for all (t j ) ∈ λ0.

Proof. Suppose that the convergence of
∑∞

j=1 t j x j is not uniform for (t j ) ∈ λ0 ⊆ λ,
that is, there is an ε > 0 such that for every m0 ∈ N we have m > m0 and (s j ) ∈ λ0
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for which ‖∑∞
j=m s j x j‖ ≥ ε. Hence, there exist m1 > 1 and (t1 j ) ∈ λ0 such that

‖∑∞
j=m1

t1 j x j‖ ≥ ε. Since there is an n1 > m1 such that ‖∑∞
j=n1+1 t1 j x j‖ < ε/2, we

have that ‖∑n1
j=m1

t1 j x j‖ > ε/2. By induction we get an integer sequence m1 < n1 <

m2 < n2 < · · · and {(tk j ) : k ∈ N} ⊆ λ0 such that ‖∑nk
j=mk

tk j x j‖ > ε/2 for all k ∈ N.
By Definition 2.1(1), there is a t0 ∈ C. Let

t j =
{

tk j , mk ≤ j ≤ nk, k = 1, 2, . . . ,

t0, otherwise.

Then (t j ) ∈ λ. However,
∑∞

j=1 t j x j diverges. �

Now, if λ has a frame subset λ0, we will prove that ‖ · ‖λ0 is a norm on MCλ(X),
moreover, (MCλ(X), ‖ · ‖λ0) is complete.

Theorem 2.1. (MCλ(X), ‖ · ‖λ0) is a Banach space for each frame subset λ0 of λ.

Proof. Let ε > 0 and (x j ) ∈ MCλ(X). By Proposition 2.1, there is an n0 ∈ N such that
‖∑m

j=n t j x j‖ < ε for all n > m > n0 and (t j ) ∈ λ0. It follows from Definition 2.1(4),
for i = 1, 2, . . . , n0, there exists bi > 0 such that |ti | ≤ bi for all (t j ) ∈ λ0. Hence,
‖∑n

j=1 t j x j‖ <
∑n0

j=1 b j‖x j‖+ε for all n ∈ N and (t j ) ∈ λ0, that is, ‖·‖λ0 : MCλ(X) →
[0,+∞).

It is easy to verify that ‖(x j ) + (y j )‖λ0 ≤ ‖(x j )‖λ0 + ‖(y j )‖λ0 and ‖t (x j )‖λ0 =
|t |‖(x j )‖λ0 . Next, if ‖(x j )‖λ0 = 0, then

∑n
j=1 t j x j = 0 for all n ∈ N and (t j ) ∈ λ0. By

Definition 2.1(3), for i ∈ N, there exists (ti j ) ∈ λ0 such that tii 	= 0. Pick n = 1, t11x1 = 0
implies that x1 = 0. Moreover, pick n = 2, t21x1 + t22x2 = 0 + t22x2 = 0, then x2 = 0.
By induction we have that (x j ) = 0. It was proved that ‖ · ‖λ0 is a norm on MCλ(X).

Let (xnj ), n ∈ N be Cauchy in (MCλ(X), ‖ · ‖λ0). Hence, there exists an m0 ∈ N such
that ‖∑k

j=1 t j xnj −∑k
j=1 t j xmj‖ < ε/3 for all n > m > m0, k ∈ N and (t j ) ∈ λ0. Since

X is complete, there exist yk,(t j ) ∈ X and n1 ∈ N such that

∥
∥
∥
∥
∥
∥

k∑

j=1

t j xnj − yk,(t j )

∥
∥
∥
∥
∥
∥

< ε/3,∀n > n1, k ∈ N, (t j ) ∈ λ0. (1)

By Proposition 2.1, for every n ∈ N, there exists k0 ∈ N such that ‖∑k
j=1 t j xnj −

∑p
j=1 t j xnj‖ < ε/3 for all k > p > k0 and (t j ) ∈ λ0. Pick n > n1, ‖yk,(t j ) − yp,(t j )‖ < ε

for all k > p > k0 and (t j ) ∈ λ0. Since X is complete, yk,(t j ) converges uniformly for
(t j ) ∈ λ0, when k → +∞.

By Definition 2.1(3), for i ∈ N, there exists (ti j ) ∈ λ0 such that tii 	= 0. Hence,
|tii |‖xni − xmi‖ ≤ ‖∑i

j=1 ti j (xnj − xmj )‖ + ‖∑i−1
j=1 ti j (xnj − xmj )‖ < 2ε/3 for all n >

m > m0. Since X is complete, there exists an (z j ) ∈ XN such that limn ‖xn j − z j‖ = 0
for all j ∈ N.

Let (t j ) ∈ λ0 and k ∈ N be arbitrary. There is a n2 > n1 such that ‖xn j − z j‖ < ε for

all n > n2 and j = 1, 2, . . . , k. Hence, ‖∑k
j=1 t j z j − yk,(t j )‖ ≤ ‖∑k

j=1 t j (z j − xnj )‖ +
‖∑k

j=1 t j xnj − yk,(t j )‖ < (
∑k

j=1 |t j |)ε + ε. This implies that
∑k

j=1 t j z j = yk,(t j ) for all
(t j ) ∈ λ0 and k ∈ N. By (1), limn ‖(xnj ) − (z j )‖λ0 = 0.
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Finally, let (t j ) ∈ λ. By Definition 2.1(2), there exist a1, a2, . . . , an ∈ K and
(s1 j ), (s2 j ), . . . , (snj ) ∈ λ0, such that (t j ) = ∑n

i=1 ai (si j ). Hence,
∑k

j=1 t j z j =
∑n

i=1 ai yk,(si j ). Since yk,(si j ) converges when k → +∞, we have that (z j ) ∈ MCλ(X).
Now, we prove that MCλ(X) is complete. �

3. Main theorem

In the following sections, we only care about the λ which has at least one frame subset
λ0, for example, λ = {0, 1}N or l∞, etc. First, we discuss the totally bounded subsets
of (MCλ(X), ‖ · ‖λ0), where λ0 is any frame subset of λ. Recall that a subset B of a
topological vector space E is totally bounded or precompact if for every neighborhood U
of 0 ∈ E there is a finite subset F ⊆ E such that B ⊆ F + U (p. 83 of [9]).

PROPOSITION 3.1

Let M be a totally bounded subset of (MCλ(X), ‖ · ‖λ0). Then limn ‖∑∞
j=n t j x j‖ = 0

uniformly for (x j ) ∈ M and (t j ) ∈ λ0.

Proof. Let ε > 0 be arbitrary and let U = {(u j ) ∈ MCλ(X) : ‖(u j )‖λ0 < ε/3}.
Since M is totally bounded, there is a finite subset F = {(zi j ) : i = 1, 2, . . . , n} ⊆
MCλ(X) such that M ⊆ F + U . By Proposition 2.1, there exists an n0 ∈ N such that
‖∑n

j=m t j zi j‖ < ε/3 for all n, m > n0, i = 1, 2, . . . , n and (t j ) ∈ λ0. Moreover,

‖∑n
j=m t j u j‖ ≤ ‖∑n

j=1 t j u j‖ + ‖∑m−1
j=1 t j u j‖ < 2ε/3 for all n, m > n0, (u j ) ∈ U

and (t j ) ∈ λ0. Hence, ‖∑n
j=m t j x j‖ ≤ ‖∑n

j=m t j zi0 j‖ + ‖∑n
j=m t j u j‖ < ε for all

n, m > n0, (x j ) ∈ M and (t j ) ∈ λ0.

However, the converse is not always true.

Example 3.1. Let M = {(kx, 0, 0, . . .) : k ∈ N} where 0 	= x ∈ X . In fact, M ⊆ MCλ(X)

and limn ‖∑∞
j=n t j x j‖ = 0 uniformly for (x j ) ∈ M and (t j ) ∈ λ0, but there is a (t1 j ) ∈

λ0 such that t11 	= 0. Pick (x j ) = (kx, 0, 0, . . .) ∈ M , we have ‖(x j )‖λ0 = k‖t11x‖.
Hence, M is not totally bounded.

Now, based on the proposition of totally bounded sets, we characterize the uniform
convergence of mapping series in β-dual of MCλ(X).

Theorem 3.1. Let M ⊆ MCλ(X) and λ0 be a frame subset of λ. Then the following are
equivalent:

(I) limn ‖∑∞
j=n t j x j‖ = 0 uniformly for (x j ) ∈ M and (t j ) ∈ λ0.

(II) For every Fréchet space E and (A j ) ∈ MCλ(X)βE ,
∑∞

j=1 A j (x j ) converges
uniformly for (x j ) ∈ M.

Proof.

(I) 
⇒ (II). If (II) fails, there is a Fréchet space (E, p(·)) and (A j ) ∈ MCλ(X)βE such
that the convergence of

∑∞
j=1 A j (x j ) is not uniform for (x j ) ∈ M . Hence, there is an
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ε > 0 such that for every m0 ∈ N we have n > m > m0 and (x j ) ∈ M for which
p(

∑n
j=m A j (x j )) > ε.

By (I), there is a j1 ∈ N such that ‖∑∞
j=n t j z j‖ < 1/2 for all (z j ) ∈ M , n > j1 and

(t j ) ∈ λ0. Then, there exist n1 > m1 > j1 and (x1 j )∈ M such that p(
∑n1

j=m1
A j (x1 j ))>ε

and ‖∑n1
j=m1

t j x1 j‖ < 1/2 for all (t j ) ∈ λ0. Pick j2 > n1 for which ‖∑∞
j=n t j z j‖ <

1/22 for all (z j ) ∈ M , n > j2 and (t j ) ∈ λ0. Then, there exist n2 > m2 > j2 and (x2 j ) ∈
M such that p(

∑n2
j=m2

A j (x2 j )) > ε and ‖∑n2
j=m2

t j x2 j‖ < 1/22 for all (t j ) ∈ λ0.
Continuing this construction produces an integer sequence m1 < n1 < m2 < n2 < · · ·
and {(xk j ) : k ∈ N} ⊆ M such that

p

⎛

⎝
nk∑

j=mk

A j (xk j )

⎞

⎠ > ε and

∥
∥
∥
∥
∥
∥

nk∑

j=mk

t j xk j

∥
∥
∥
∥
∥
∥

< 1/2k,∀(t j ) ∈ λ0, k ∈ N.

Let

x j =
{

xk j , mk ≤ j ≤ nk, k = 1, 2, . . . ,

0, otherwise.

For every (t j ) ∈ λ, it follows from Definition 2.1(2) that there exist a1, a2, . . . ,

an ∈ K and (s1 j ), (s2 j ), . . . , (snj ) ∈ λ0 such that (t j ) = ∑n
i=1 ai (si j ). Hence,∑∞

j=1 t j x j = ∑n
i=1 ai

∑∞
k=1

∑nk
j=mk

si j xk j . Since
∑∞

k=1 1/2k = 1 and X is com-

plete,
∑∞

k=1
∑nk

j=mk
si j xk j converges for each i = 1, 2, . . . , n. Then, (x j ) ∈ MCλ(X).

However,
∑∞

j=1 A j (x j ) diverges which contradicts (A j ) ∈ MCλ(X)βE .

(II) 
⇒ (I). If (I) fails, there exist ε > 0, m1 < n1 < m2 < n2 < · · · , {(xk j ) : k ∈ N} ⊆
M and {(tk j ) : k ∈ N} ⊆ λ0 such that ‖∑nk

j=mk
tk j xk j‖ > ε for all k ∈ N.

For each j ∈ N define A j : X → MCλ(X) by A j (x) = (0, . . . , 0,
( j)
x , 0, . . .) for all

x ∈ X . For every (x j ) ∈ MCλ(X), it follows from Proposition 2.1 that

lim
n

∥
∥
∥
∥
∥
∥

n∑

j=1

A j (x j ) − (x j )

∥
∥
∥
∥
∥
∥

λ0

= lim
n

‖ (0, . . . , 0, xn+1, xn+2, . . .) ‖λ0

= lim
n

sup
(t j )∈λ0,k∈N

∥
∥
∥
∥
∥
∥

n+k∑

j=n+1

t j x j

∥
∥
∥
∥
∥
∥

= 0.

Then, (A j ) ∈ MCλ(X)βE , where E = MCλ(X) is a Banach space. However,

∥
∥
∥
∥
∥
∥

nk∑

j=mk

A j (xk j )

∥
∥
∥
∥
∥
∥

λ0

= ‖ (
0, . . . , 0, xkmk , xknk , . . .

) ‖λ0

= sup
(t j )∈λ0,n∈N

∥
∥
∥
∥
∥
∥

mk+n∑

j=mk

t j xk j

∥
∥
∥
∥
∥
∥

≥
∥
∥
∥
∥
∥
∥

nk∑

j=mk

t j xk j

∥
∥
∥
∥
∥
∥

> ε.

This contradicts (II). �
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4. Applications

Let X, Y be Banach spaces, λ ⊆ C
N which has a frame subset λ0, and

Mλ,λ0 =
⎧
⎨

⎩
M ⊆ MCλ(X) : lim

n
‖

∞∑

j=n

t j x j‖=0 uniformly for (x j ) ∈ M and (t j ) ∈ λ0

⎫
⎬

⎭
.

By Proposition 3.1, any totally bounded subset of MCλ(X) belongs to Mλ,λ0 .

The Banach–Steinhaus theorem says that if the linear operator Tn : X → Y is con-
tinuous and limn Tn(x) = T (x) at each x ∈ X , then T : X → Y is also linear and
continuous. Moreover, limn Tn(x) = T (x) uniformly for x in any totally bounded subset
of X (pp. 299–300 of [5]).

In general, the Banach–Steinhaus theorem fails to hold for nonlinear mappings.
However, from Theorem 3.1, we directly have the following.

Theorem 4.1. If (A j ) ∈ MCλ(X)βY and fn[(x j )] = ∑n
j=1 A j (x j ), f [(x j )] =

∑∞
j=1 A j (x j ) for (x j ) ∈ MCλ(X). Then limn fn[(x j )] = f [(x j )] uniformly for (x j ) in

any totally bounded subset of MCλ(X).

COROLLARY 4.1

If (A j ) ∈ MCλ(X)βY and A j is continuous, then 〈(A j ), (x j )〉 = ∑∞
j=1 A j (x j ) defines a

continuous mapping 〈(A j ), ·〉 : MCλ(X) → Y .

Proof. Suppose that (x (n)
j ) → (x j ) in MCλ(X) when n → +∞. By Definition 2.1(3),

for every k ∈ N, there exist (tk j ) ∈ λ0 such that tkk 	= 0. Hence, ‖tkk(x (n)
k − xk)‖ ≤

‖∑k
j=1 tk j (x (n)

j − x j )‖ + ‖∑k−1
j=1 tk j (x (n)

j − x j )‖ ≤ 2‖(x (n)
j ) − (x j )‖λ0 → 0, that

is, limn x (n)
k = xk for all k ∈ N. So limn

∑m
j=1 A j (x (n)

j ) = ∑m
j=1 A j (x j ) for all

m ∈ N. Since {(x (n)
j ) : n ∈ N} is totally bounded, it follows from Theorem 4.1

that limn
∑m

j=1 A j (x (n)
j ) = ∑∞

j=1 A j (x (n)
j ) uniformly with respect to n ∈ N. Then,

limn
∑∞

j=1 A j (x (n)
j ) = limn limm

∑m
j=1 A j (x (n)

j ) = limm limn
∑m

j=1 A j (x (n)
j ) =

limm
∑m

j=1 A j (x j ) = ∑∞
j=1 A j (x j ). �

Finally, we suppose that λ satisfies the following condition: for any (t j ) ∈ λ and j1 <

j2 < · · · , let

t ′j =
{

t j , j = jk, k = 1, 2, . . . ,

0, otherwise.
(2)

Then (t ′j ) ∈ λ. For example, λ = {0, 1}N or l∞, etc. Then by the Orlicz–Pettis theorem
and Theorem 3.1, we can get the following.

Theorem 4.2. If (A j ) ⊆ Y X such that A j (0) = 0 for all j ∈ N and
∑∞

j=1 A j (x j )

converges weakly at each (x j ) ∈ MCλ(X). Then
∑∞

j=1 A j (x j ) converges uniformly for
(x j ) in any totally bounded subset of MCλ(X).
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Proof. For any (x j ) ∈ MCλ(X), (t j ) ∈ λ and j1 < j2 < · · · , let (t ′j ) by (2) and

u j =
⎧
⎨

⎩

x j , j = jk, k = 1, 2, . . . ,

0, otherwise.

Hence,
∑n

j=1 t j u j = ∑n
k=1 t jk x jk = ∑n

j=1 t ′j x j converges when n → +∞. Then (u j ) ∈
MCλ(X) so

∑∞
j=1 A j (u j ) is weakly convergent. Since A j (0) = 0 for all j ∈ N, it follows

from
∑n

k=1 A jk (x jk ) = ∑ jn
j=1 A j (u j ) that

∑∞
k=1 A jk (x jk ) is weakly convergent. By the

Orlicz–Pettis theorem,
∑∞

j=1 A j (x j ) converges in Y . Hence, (A j ) ∈ MCλ(X)βY . �
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