STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 86
(For candidates admitted from the academic year 2015-2016 and thereafter)
SUBJECT CODE: 15EC/AC/MM25

B. A. DEGREE EXAMINATION, APRIL 2019
 BRANCH IV - ECONOMICS
 SECOND SEMESTER

COURSE : ALLIED - CORE
 PAPER : MATHEMATICAL METHODS FOR ECONOMICS
 TIME : 3 HOURS
 MAX. MARKS: 100
 SECTION - A
 ANSWER ANY TEN QUESTIONS. EACH ANSWER NOT TO EXCEED 50 WORDS:

($10 \times 2=20$)

1. Find the equation of the line joining the points $(2,6)$ and $(4,3)$
2. State the properties of transpose of a matrix
3. Find the equilibrium price and quantity: $\mathrm{Q}_{\mathrm{d}}=10-0.5 \mathrm{P}, \mathrm{Q}_{\mathrm{s}}=5+2 \mathrm{P}$
4. State the condition for equilibrium of a firm using calculus
5. Find $5 \mathrm{~A}+3 \mathrm{~B}$ if $\mathrm{A}=\left[\begin{array}{ll}6 & 0 \\ 2 & 6\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}4 & 7 \\ 4 & 2\end{array}\right]$
6. Find the derivative of : $y=\left(2 x^{2}+5\right)^{3}$
7. Check if the function $y=2 x+10 x^{2}$ is increasing or decreasing at $x=5$
8. If $Z=39 x^{2}+40 x y+39 y^{2}$ show that $Z_{x y}=Z_{y x}$
9. Find the determinant of

$$
\left.A=\begin{array}{ccc}
4 & 3 & 1 \\
5 & 0 & 3
\end{array} \right\rvert\,
$$

10. Find the MC and AC functions for $T C=2 Q^{3}-3 Q^{2}+400 Q+5000$
11. Given the demand function $P=10-2 P$, Find the $M R$ function
12. State the conditions for finding maxima and minima.

SECTION - B

ANSWER ANY FIVE QUESTIONS. EACH ANSWER NOT TO EXCEED 400 WORDS: ($5 \times 8=40$ Marks)

13. Solve the following simultaneous equations using Cramer's Rule:

$$
\begin{aligned}
& x+y=12 \\
& 2 x+5 y+2 z=20 \\
& 6 x+3 y+6 z=0
\end{aligned}
$$

14. The demand function of a monopolist is given by $\mathrm{P}=50-2 \mathrm{Q}$. Graph the Total Revenue function for $0 \leq \mathrm{Q} \leq 30$. Estimate from the graph the value of Q at which revenue is maximum.
15. Prove that $A^{-1}=I$

16. Bring out the general structure of an input-output model and show how output is determined.
17. Discuss the use of different kinds of mathematical functions in economics.
18. Show that a Cobb-Douglas production function $\mathrm{Q}=\mathrm{A} \mathrm{K}^{\alpha} \mathrm{L}^{\beta}$ satisfies Euler's theorem.
19. Given the demand function $\mathrm{P}=50-4 \mathrm{Q}$. Find the revenue maximizing price and output. What is the elasticity of demand at that price?
20. $\mathrm{Q}_{\mathrm{A}}=100-2 \mathrm{P}_{\mathrm{A}}+0.2 \mathrm{Y}+0.3 \mathrm{P}_{\mathrm{B}}$ Find the price, income and cross-price elasticities of demand at $\mathrm{P}_{\mathrm{A}}=6, \mathrm{Y}=500$ and $\mathrm{P}_{\mathrm{B}} 10$.

SECTION - C

ANSWER ANY TWO QUESTIONS. EACH ANSWER NOT TO EXCEED 1000 WORDS
 ($2 \times 20=40$)

21. State and prove the properties of determinants.
22. Given the Input Output table for a three sector economy

	Input to				
		Agriculture	Industry	Services	Other demand
	Agriculture	150	225	125	100
	Industry	210	250	140	300
	Services	170	0	30	100

If the final demands from each sector are changed to 500, 550 and 300 respectively for agriculture, industry and services, calculate the total output from each sector.
23. $\mathrm{TC}=0.5 \mathrm{Q}^{3}-15 \mathrm{Q}^{2}+175 \mathrm{Q}+300$ and $\mathrm{P}=152.5-3 \mathrm{Q}$; Find the profit maximizing output $\&$ price and the maximum profit.
24. A perfectly competitive firm produces two goods X and Y , which are sold at Rs. 54 and Rs. 52 respectively. The firm has a cost function given by TC $=3 x^{2}+3 x y+2 y^{2}-100$. Find the quantities of each good which must be produced and sold to maximize profits. What is the maximum profit?

