STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI -86

(For candidates admitted from 2016 onwards)

M.PHIL. Degree Examination, February 2018

Paper: FUNCTIONAL ANALYSIS

Code:16MT/RO/ FA 105

Max: 100marks

Time: 3hrs

SECTION A (5x8=40) Answer any FIVE questions

- 1. Discuss the seperability of $L_{p}(0,1)$
- 2. State and prove Banach contraction principle.
- 3. Prove that if X is a commutative Banach algebra with identity e, then ||e x|| < 1 implies that x has an inverse.
- 4. Show that a bounded linear operator $P: H \to H$ on a Hilbert space H is a projection if and only if P is self adjoint and idempotent
- 5. Prove that the sum and product of projections is a projection.
- 6. Prove that if the Frechet differential exists then the weak differential also exists and df(x,h) = Df(x,h)
- 7. Suppose X and Y are normed spaces then prove that to each $T \in B(X, Y)$ there corresponds a unique $T^* \in B(Y^*, X^*)$ that satisfies $\langle Tx, y^* = \langle x, T^*y^* \rangle$ for all $x \in X$ and $y^* \in Y^*$

SECTION B (3x20=60) Answer any THREE questions

- 8.a) State and prove Hausdorff theorem.
 - b) Prove that a complete metric space is of category II.
- 9. a) Prove that if X is a Banach algebra x^{-1} exists if and only if x is in no ideal. b) If $x \in X$ is never 0 prove that its inverse never exist.
- 10. Let $T:X\to X$ be a compact linear operator a normed space X. Prove that for every $\lambda \neq 0$ the range of $T_{\lambda} = T - \lambda I$ is closed.
- 11. If an n^{th} partial derivative of the function f exists in a neighbourhood of the point $T_0 = (t_1^{(0)}, t_2^{(0)}, \dots, t_n^{(0)})$ and if this derivative is continuous at T_0 then prove that the n^{th} partial difference derivative also exists at T_0 . Further prove that both the derivatives coincide
- 12. State and prove Haar Uniqueness theorem.
