M.Phil. DEGREE EXAMINATION, FEBRUARY 2017
 MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ CORE	
PAPER	$:$ ADVANCED ALGEBRA AND ANALYSIS	
TIME	$: \mathbf{3}$ HOURS	MAX. MARKS : $\mathbf{1 0 0}$

SECTION - A

ANSWER ANY FIVE QUESTIONS:

1. (a) Distinguish between a partially ordered set and a totally ordered set.
(b) Prove that any totally ordered set is distributive Lattice.
2. If a and b are elements of a Modular lattice, then prove that the map $x \rightarrow x \Lambda b$ is an isomorphism of the interval $I[a, a v b]$ onto $I[a \Lambda b, b]$ and that the inverse isomorphism is $y \rightarrow y v a$.
3. If J is a nil left ideal in an Artinian ring R, then prove that J is Nilpotent.
4. Let R be a Noetherian ring having no non-zero Nilpotent ideals. Then prove that R has no nonzero nil ideals.
5. (a) Define a tensor product of a right R-module and a left R-module.
(b) Let K be a commutative ring and let A and B be K-algebras. Define the tensor product of A and B.
(c) When do you call a topological space, an Hausdorffspace?
6. In a topological vector space X, prove that
(a) every neighbourhood of 0 contains a balanced neighbourhood of 0 , and
(b) every convexneighbourhood of 0 contains a balanced convex neighbourhood of 0 .
7. State and prove the Jensen's inequality on the positive measure on a σ - algebra.

SECTION B

ANSWER ANY THREE QUESTIONS:

8. State and prove the Fundamental theorem of Projective Geometry.
9. State and prove the Wedderburn - Artin theorem.
10. State and prove the Urysohn's lemma.
11. If X is topological vector space with a countable local base, then prove that there is a metric d on X satisfying the following :
(a) d is compatible with the topology of x
(b) the open balls centered at 0 are balanced, and
(c) d is invariant : $d(x+z, y+z)=d(x, y)$ for $x, y, z € X$. If, in addition, X is locally convex, then d can be chosen so as to satisfy (a), (b), (c) and also (d) all open balls are convex.
12. State and prove the Plancherel theorem on Fourier transforms.
