STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16\& thereafter)

SUBJECT CODE : 15MT/PE/NC14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : ELECTIVE
PAPER : NUMBER THEORY AND CRYPTOGRAPHY

ANSWER ALL THE QUESTIONS:

1. Convert 10^{6} to the base 26 .
2. Find $\varphi(105)$.
3. If p is prime, when do you say that the field F has characteristic p ?
4. Find the inverse of the matrix $\left(\begin{array}{cc}15 & 17 \\ 4 & 9\end{array}\right) \bmod 26$.
5. Show that 561 is a Carmichael number.

SECTION - B

ANSWER ANY FIVE QUESTIONS:
$(5 \times 6=30)$
6. (i) Multiply $(212)_{3}$ by $(122)_{3}$ (ii) Divide $(40122)_{7}$ by $(126)_{7}$.
7. Find $d=$ g.c.d. $(1547,560)$ also express d as a linear combination of 1547 and 560.
8. State and prove Wilson's theorem.
9. If F_{q} is a field of $q=p^{f}$ elements, then prove that every element satisfies the equation $X^{q}-X=0$ and F_{q} is precisely the set of roots of that equation. Also prove that for every prime power $=p^{f}$, the splitting field over F_{q} of the polynomial $X^{q}-X$ is a field of q elements.
10. Prove that $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p$.
11. You intercept the Crypto text "OFJDFOHFXOL" which was enciphered using an affine transformation of single-letter plaintext units in the 27 letter alphabet (with blank $=26$). You know that the first word is "I" ("I" followed by blank). Find the original plaintext.
12. Let n be an odd composite integer. If n is divisible by a perfect square >1, then prove that n is not a Carmichael number.

SECTION - C
 ANSWER ANY THREE QUESTIONS:

13. (a) Find an upper bound for the number of bit operations required to compute n !.
(b) Show that the power of a prime p which exactly divides n ! is equal to $\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots\left[\frac{n}{p^{k}}\right]$, where $p^{k} \leq n \leq p^{k+1}$.
(c) Show that the Euclidean algorithm always gives the greatest common divisor in a finite number of steps. Also Show that if $a>b$, Time (finding g.c.d. (a, b) by Euclidean algorithm $)=O\left(\log ^{3}(a)\right)$.
14. (a) State and prove Chinese remainder theorem.
(b) Prove that for any integer b and any positive integer $n, b^{n}-1$ is divisible by $b-1$ with quotient $b^{n-1}+b^{n-2}+\cdots+b^{2}+b+1$.
(c) Compute $2^{100000} \bmod 77$.
15. (a) Prove that every finite field has a generator. If g is a generator of F_{q}^{*}, prove that g^{j} is also a generator if and only if $g . c . d .(j, q-1)=1$. Show also that, there are a total of $\varphi(q-1)$ different generators of F_{q}^{*}.
(b) State and prove the law of Quadratic Reciprocity
16. (a) In the 27-letter alphabet (with blank $=26$), use the affine enciphering transformation with key $\mathrm{a}=13, \mathrm{~b}=9$ to encipher the message 'HELP ME'".
(b) Suppose we know that our adversary is using an enciphering matrix A in the 26 letter alphabet. We intercept the cipher text "WKNCCHSSJH", and we know that the first word is "GIVE". Find the deciphering matrix A^{-1} and read the message.

$$
(6+14)
$$

17. (a) If $n \equiv 3 \bmod 4$, then prove that n is a strong pseudoprime to the base b if and only if it is an Euler pseudoprime to the base b.
(b) Prove that a carmichael number must be the product of at least three distinct primes.
(c) Explain the following terms:

Authentication, Hash function, Key Exchange, Probabilistic Encryption. (5+5+10)

bachachaca

