STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16& thereafter)

SUBJECT CODE: 15MT/PE/NC14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	: ELECTIVE	
PAPER	NUMBER THEORY AND CRYPTOGRAPHY	
TIME	: 3 HOURS	MAX. MARKS : 100
	SECTIO	N - A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Convert 10^6 to the base 26.
- 2. Find $\varphi(105)$.
- 3. If p is prime, when do you say that the field F has characteristic p?
- 4. Find the inverse of the matrix $\begin{pmatrix} 15 & 17 \\ 4 & 9 \end{pmatrix} mod 26$.
- 5. Show that 561 is a Carmichael number.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 6. (i) Multiply $(212)_3$ by $(122)_3$ (ii) Divide $(40122)_7$ by $(126)_7$.
- 7. Find d = g.c.d.(1547, 560) also express d as a linear combination of 1547 and 560.
- 8. State and prove Wilson's theorem.
- 9. If F_q is a field of $q = p^f$ elements, then prove that every element satisfies the equation $X^q X = 0$ and F_q is precisely the set of roots of that equation. Also prove that for every prime power p^f , the splitting field over F_q of the polynomial $X^q X$ is a field of q elements.
- 10. Prove that $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} modp$.
- 11. You intercept the Crypto text "OFJDFOHFXOL" which was enciphered using an affine transformation of single-letter plaintext units in the 27 letter alphabet (with blank = 26). You know that the first word is "I" ("I" followed by blank). Find the original plaintext.
- Let n be an odd composite integer. If n is divisible by a perfect square > 1, then prove that n is not a Carmichael number.

 $(3 \times 20 = 60)$

SECTION – C

ANSWER ANY THREE QUESTIONS:

- 13. (a) Find an upper bound for the number of bit operations required to compute *n*!.
 - (b) Show that the power of a prime p which exactly divides n! is equal to

 $\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots \left[\frac{n}{p^k}\right], \text{ where } p^k \le n \le p^{k+1}.$

- (c) Show that the Euclidean algorithm always gives the greatest common divisor in a finite number of steps. Also Show that if a > b, Time (finding g.c.d.(a, b) by Euclidean algorithm) = $O(log^3(a))$. (5+5+10)
- 14. (a) State and prove Chinese remainder theorem.
 - (b) Prove that for any integer b and any positive integer n, bⁿ − 1 is divisible by b − 1 with quotient b^{n−1} + b^{n−2} + … + b² + b + 1.
 - (c) Compute $2^{100000} \mod 77$. (10+5+5)
- 15. (a) Prove that every finite field has a generator. If g is a generator of F_q^* , prove that g^j is also a generator if and only if g.c.d.(j,q-1) = 1. Show also that, there are a total of $\varphi(q-1)$ different generators of F_q^* .
 - (b) State and prove the law of Quadratic Reciprocity (10+10)
- 16. (a) In the 27-letter alphabet (with blank = 26), use the affine enciphering transformation with key a =13, b = 9 to encipher the message "HELP ME".
 - (b) Suppose we know that our adversary is using an enciphering matrix A in the 26 letter alphabet. We intercept the cipher text "WKNCCHSSJH", and we know that the first word is "GIVE". Find the deciphering matrix A^{-1} and read the message. (6 + 14)
- 17. (a) If $n \equiv 3 \mod 4$, then prove that *n* is a strong pseudoprime to the base b if and only if it is an Euler pseudoprime to the base *b*.
 - (b) Prove that a carmichael number must be the product of at least three distinct primes.
 - (c) Explain the following terms: Authentication, Hash function, Key Exchange, Probabilistic Encryption. (5+5+10)