STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE : 15MT/PC/TO34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE
PAPER	: TOPOLOGY
TIME	: 3 HOURS

MAX. MARKS : 100

SECTION – A

 $(5 \times 2 = 10)$

- 1. Show that finite union of closed sets is closed.
- 2. Define a linear continuum and give an example.
- 3. State the finite intersection property.

ANSWER ALL THE QUESTIONS:

- 4. State Tietz extension theorem.
- 5. Define the box topology.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 6. Define a Hausdorff space and show that every finite point set in a Hausdorff space X is closed.
- 7. State and prove the intermediate value theorem.
- 8. Show that every compact subspace of a Hausdorff space is closed.
- 9. Prove that every metrizable space is normal.
- 10. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ defined by $f(\alpha) = (f_{\alpha}(\alpha))_{\alpha \in J}$ where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Show that f is continuous if and only if each function f_{α} is continuous.
- 11. Show that the union of a collection of connected subspaces of X that have a point in common is connected.
- 12. Show that every compact space is limit point compact.

SECTION – C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

- 13. (a) Let \mathcal{B} and \mathcal{B}' be bases for the topologies τ and τ' respectively on X. Prove that the following conditions are equivalent.
 - (i) τ' is finer than τ .
 - (ii) For each $x \in X$, and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.
 - (b) If A is a subspace of X and B is a subspace of Y, then show that the product topology on A × B is the same as the topology A × B inherits as a subspace of X × Y.
 - (c) Let Y be a subspace of X. Show that a set A is closed in Y is and only if it is equals the intersection of a closed set of X with Y.
- 14. (a) If L is a linear continuum in the order topology, then show that L is connected.
 - (b) Define locally connected space and show that a subspace X is locally connected if and only if for every open set U of X, each component of U is open in X.
- 15. (a) Show that product of finitely many compact spaces is compact.
 - (b) State and prove uniform continuity theorem.
- 16. State and prove Urysohn's metrization theorem.
- 17. State and prove the Tychonoff theorem.