STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16& thereafter)

SUBJECT CODE: 15MT/PC/MA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	CORE
PAPER	:	MODERN ALGEBRA
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. If G is a group of order 25, then what can you say about the centre of the group G? Give reasons for your answer.
- 2. State Fermat's theorem.
- 3. Is there an irreducible polynomial of degree 3 over the field of real numbers? If yes, give an example of such a polynomial or if no, give reasons.
- 4. Define an algebraic number and give an example.
- 5. Define the Galois group of a polynomial $f(x) \in F[x]$.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

$(5 \times 6 = 30)$

- 6. Suppose that G is the internal direct product of N_1, N_2, \dots, N_n . Then prove that for $i \neq j$ $N_i \cap N_j = (e)$, and if $a \in N_i, b \in N_j$ then ab = ba.
- 7. Let *R* be a Euclidean ring and *a*, *b* in *R*. If $b \neq 0$ is not a unit in *R*, then prove that d(a) < d(ab).
- 8. State and prove the Eisenstein Criterion about the irreducibility of a polynomials over the field of rational numbers.
- 9. If a rational number *r* is also an algebraic integer, then prove that *r* must be an ordinary integer.
- 10. Prove that a group G is solvable if and only if $G^{(k)} = (e)$ for some k.
- 11. If G is a group of order 108 then show that G has a normal subgroup of order 9 or 27.
- 12. Find the splitting field of the polynomial $x^3 2 \in Q[x]$ and also find its degree over the field Q of rational numbers.

SECTION – C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

- 13. (a) Prove that any two p-Sylow subgroups of a finite group G are conjugates.(b) State and prove Cauchy's theorem of a finite group G.
- 14. (a) Prove that the ring of Gaussian integers is a Euclidean ring.
 (b) Prove that any prime number of the form 4n + 1can be expressed as a sum of two squares.
- 15. (a) State and prove the division algorithm in the ring of polynomials F[x] over a field F.
 - (b) Prove that a product of two primitive polynomials over the rational field is a primitive polynomial.
- 16. Prove that an element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.
- 17. If F is a field which contain all the nth roots of unity for every integer n and if p(x) in F[x] is solvable by radicals over F, then prove that the Galois group over F of p(x) is a solvable group.
