STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16\& thereafter)

SUBJECT CODE : 15MT/PC/MA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ CORE
PAPER	$:$ MODERN ALGEBRA
TIME	$: 3$ HOURS

SECTION - A
ANSWER ALL THE QUESTIONS: $(5 \times 2=10)$

1. If G is a group of order 25 , then what can you say about the centre of the group G? Give reasons for your answer.
2. State Fermat's theorem.
3. Is there an irreducible polynomial of degree 3 over the field of real numbers? If yes, give an example of such a polynomial or if no, give reasons.
4. Define an algebraic number and give an example.
5. Define the Galois group of a polynomial $f(x) \in F[x]$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. Suppose that G is the internal direct product of $N_{1}, N_{2}, \cdots, N_{n}$. Then prove that for $i \neq j$ $N_{i} \cap N_{j}=(e)$, and if $a \in N_{i,} b \in N_{j}$ then $a b=b a$.
7. Let R be a Euclidean ring and a, b in R. If $b \neq 0$ is not a unit in R, then prove that $d(a)<d(a b)$.
8. State and prove the Eisenstein Criterion about the irreducibility of a polynomials over the field of rational numbers.
9. If a rational number r is also an algebraic integer, then prove that r must be an ordinary integer.
10. Prove that a group G is solvable if and only if $G^{(k)}=(e)$ for some k.
11. If G is a group of order 108 then show that G has a normal subgroup of order 9 or 27 .
12. Find the splitting field of the polynomial $x^{3}-2 \in Q[x]$ and also find its degree over the field Q of rational numbers.

SECTION - C

ANSWER ANY THREE QUESTIONS:
 $(3 \times 20=60)$

13. (a) Prove that any two p-Sylow subgroups of a finite group G are conjugates.
(b) State and prove Cauchy's theorem of a finite group G.
14. (a) Prove that the ring of Gaussian integers is a Euclidean ring.
(b) Prove that any prime number of the form $4 n+l$ can be expressed as a sum of two squares.
15. (a) State and prove the division algorithm in the ring of polynomials $F[x]$ over a field F .
(b) Prove that a product of two primitive polynomials over the rational field is a primitive polynomial.
16. Prove that an element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.
17. If F is a field which contain all the nth roots of unity for every integer n and if $p(x)$ in $F[x]$ is solvable by radicals over F, then prove that the Galois group over F of $p(x)$ is a solvable group.

acachacala

