STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE: 15MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE
PAPER	:	GRAPH THEORY
TIME	:	3 HOURS

$\begin{array}{c} \text{MAX. MARKS: } 100\\ \text{SECTION}-\text{A} & (5 \text{ X } 2 = 10 \)\\ \text{ANSWER ALL THE QUESTIONS} \end{array}$

- 1. Define tree. Give an example for a tree on six vertices.
- 2. If *G* is *k*-edge connected, then prove that $\varepsilon \ge \frac{k\nu}{2}$.
- 3. Find the edge chromatic number of Petersen graph.
- 4. Show that $K_{3,3}$ is nonplanar using Euler's formula.
- 5. Define diameter of graph. Give an example.

$SECTION - B \qquad (5 X 6 = 30)$ ANSWER ANY FIVE QUESTIONS

- 6. Prove that the number of vertices of odd degree in a graph is even.
- 7. If G is a tree then prove that $\varepsilon = \nu 1$.
- 8. If G is a k-regular bipartite graph with k > 0 then prove that G has a perfect matching.
- 9. If G is bipartite to prove that $\chi' = \Delta$.

10. Prove that a set $S \subseteq V$ is an independent set of *G* if and only if $V \setminus S$ is a covering of *G*.

- 11. State and prove Euler's formula.
- 12. Define three equivalent definitions of kautz digraph. Draw K(2,1) and K(2,2).

$SECTION - C \qquad (3 X 20 = 60)$ ANSWER ANY THREE QUESTIONS

13. Let G be a graph with v-1 edges prove that the following statements are equivalent.

(i) G is connected (ii) G is acyclic (iii) G is a tree

- 14. State and prove Hall's theorem.
- 15. State and prove Vizing theorem.
- 16. State and prove Five colour theorem.
- 17. Explain the basic principles of network design.
