STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2015-16 and thereafter)SUBJECT CODE : 15MT/PC/FD34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE
PAPER : FLUID DYNAMICS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. Define stream lines.
2. Define Beltrami vector.
3. Give examples for axi - symmetric flows.
4. Define line sink.
5. State the use of components of stress.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. At the point in an incompressible fluid having spherical polar coordinates (r, θ, ψ), the velocity components are $\left[2 \mathrm{Mr}^{-3} \cos \theta, \mathrm{Mr}^{-3} \sin \theta, 0\right]$, where M is a constant.Show that the velocity is of the potential kind.Find the velocity potential and the equations of the streamlines.
7. Obtain the acceleration of a fluid.
8. Derive Bernoulli's equation of motion.
9. Obtain doublet in a uniform stream.
10. Discuss the flow for which $w=z^{2}$.
11. Show how the circle theorem applied to determine modified flows when a long circular cylinder is introduced into a given 2 dimensional flow.
12. State and prove Uniqueness theorem.
SECTION - C

ANSWER ANY THREE QUESTIONS:
13. a) Show that at all points of the field of flow the equipotentials are cut orthogonally by the streamlines.
b) Liquid flows through a pipe whose surface of revolution of the curve
$y=a+k x^{2} / a$ about the $x-$ axis $(-a \leq x \leq a)$. If the liquid enters at the end $x=-a$ of the pipe with velocity V,show that the time taken by a liquid particle to traverse the entire length of the pipe from $x=-a$ to $x=+a$ is

$$
\begin{equation*}
\left\{2 a / V(1+k)^{2}\right\}\left(1+\frac{2}{3} k+\frac{1}{5} k^{2}\right) . \tag{5+15}
\end{equation*}
$$

14. a) AB is a tube of small uniform bore forming a quadrantal arc of a circle of radius a andcentre O, OA being horizontal and OB vertical with B below O . The tube is full of liquid of density ρ, the end B being closed .If B is suddenly opened, show that initially $/ d t=2 g / \pi$, where $u=u(t)$ is the velocity, and that the pressure at a pointwhose angular distance from A is θ immediately drops to $\rho g a\left(\sin \theta-\frac{2 \theta}{\pi}\right)$ above atmospheric pressure.Prove further that when the liquid remaining in the tube subtends an angle β at the centre, $\frac{d^{2} \beta}{d t^{2}}=-\frac{2 g}{a \beta} \sin ^{2}\left(\frac{\beta}{2}\right)$.
b) Discuss the case of steady motion under conservative body forces.
15. (a) Describe doublet and find the velocity potential at a point P due to a doublet at O .
(b)Doublets of strengths μ_{1}, μ_{2} are situated at points A_{1}, A_{2} whose Cartesian coordinates are $\left(0,0, c_{1}\right),\left(0,0, c_{2}\right)$, their axes being directed towards and away from the origin respectively.Find the condition that there is no transport of fluid over the surface of the sphere $x^{2}+y^{2}+z^{2}=c_{1} c_{2}$.
16. a) Discuss the two dimensional flow for whichw$=(i k / 2 \pi) \log z$.
b) Describe the irrotational motion of an incompressible liquid for which the complex potential is $w=i k \log z$. Two parallel line vortices of strengths $k_{1}, k_{2}\left(k_{1}+k_{2} \neq 0\right)$ in unlimited liquid cross the z-plane at points A, B respectively.The centre of mass of masses k_{1} at A and k_{2} at B is G.Show that if the motion of the liquid is due solely to these vortices, G is a fixed point about which A, B move in circles with angular velocity $\left(k_{1}+k_{2}\right) /(A B)^{2}$. Show also that the fluid speed at any point P in the z - plane is $\left(k_{1}+k_{2}\right) C P /(A P . B P)$, where C is the centre of mass of masses k_{2} at A, k_{1} at B.
17. a) Discuss the coefficient of viscosity and laminar flow.
b) Derive Navier - Stokes equation of motion of a viscous fluid.
