STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 and thereafter)

SUBJECT CODE : 15MT/PC/FD34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE
PAPER	:	FLUID DYNAMICS
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Define stream lines.
- 2. Define Beltrami vector.
- 3. Give examples for axi symmetric flows.
- 4. Define line sink.
- 5. State the use of components of stress.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 6. At the point in an incompressible fluid having spherical polar coordinates (r, θ, ψ) , the velocity components are $[2Mr^{-3}cos\theta, Mr^{-3}sin\theta, 0]$, where *M* is a constant. Show that the velocity is of the potential kind. Find the velocity potential and the equations of the streamlines.
- 7. Obtain the acceleration of a fluid.
- 8. Derive Bernoulli's equation of motion.
- 9. Obtain doublet in a uniform stream.
- 10. Discuss the flow for which $w = z^2$.
- 11. Show how the circle theorem applied to determine modified flows when a long circular cylinder is introduced into a given 2 dimensional flow.
- 12. State and prove Uniqueness theorem.

SECTION – C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

13. a) Show that at all points of the field of flow the equipotentials are cut orthogonally

by the streamlines.

- b) Liquid flows through a pipe whose surface of revolution of the curve
- $y = a + kx^2/a$ about the x axis ($-a \le x \le a$). If the liquid enters at the end

x = -a of the pipe with velocity V, show that the time taken by a liquid particle to

traverse the entire length of the pipe from x = -a to x = +a is

$$\{2a/V(1+k)^2\}\left(1 + \frac{2}{3}k + \frac{1}{5}k^2\right).$$
(5+15)

 $(5 \times 6 = 30)$

14. a)AB is a tube of small uniform bore forming a quadrantal arc of a circle of radius a andcentre O,OA being horizontal and OB vertical with B below O.The tube is full of liquid of density ρ , the end B being closed .If B is suddenly opened, show that initially $/dt = 2g/\pi$, where u = u(t) is the velocity, and that the pressure at a pointwhose angular distance from A is θ immediately drops to ρga ($\sin \theta - \frac{2\theta}{\pi}$) above atmospheric pressure.Prove further that when the liquid remaining in the tube subtends an angle β at the centre, $\frac{d^2\beta}{dt^2} = -\frac{2g}{a\beta}sin^2\left(\frac{\beta}{2}\right)$.

b) Discuss the case of steady motion under conservative body forces.

- 15. (a) Describe doublet and find the velocity potential at a point P due to a doublet at O. (b)Doublets of strengths μ_1, μ_2 are situated at points A_1, A_2 whose Cartesian coordinates are $(0,0, c_1), (0,0, c_2)$, their axes being directed towards and away from the origin respectively. Find the condition that there is no transport of fluid over the surface of the sphere $x^2 + y^2 + z^2 = c_1c_2$.
- 16. a) Discuss the two dimensional flow for which $w = (ik/2\pi) \log z$.

b) Describe the irrotational motion of an incompressible liquid for which the complex potential is $w = ik \log z$. Two parallel line vortices of strengths $k_1, k_2(k_1 + k_2 \neq 0)$ in unlimited liquid cross the z-plane at points A, B respectively. The centre of mass of masses k_1 at A and k_2 at B is G. Show that if the motion of the liquid is due solely to these vortices, G is a fixed point about which A, B move in circles with angular velocity $(k_1 + k_2)/(AB)^2$. Show also that the fluid speed at any point P in the z- plane is $(k_1 + k_2) CP/(AP.BP)$, where C is the centre of mass of masses k_2 at A, k_1 at B.

- 17. a) Discuss the coefficient of viscosity and laminar flow.
 - b) Derive Navier Stokes equation of motion of a viscous fluid.