STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16& thereafter)

SUBJECT CODE: 15MT/PC/DE14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : CORE

PAPER : DIFFERENTIAL EQUATIONS

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A

 $(5 \times 2 = 10)$

ANSWER ALL QUESTIONS

- 1. Find the Wronskian of e^{-t} , e^t and te^t at t = 0.
- 2. Find the second approximation $x_1(t)$ for the initial value problem $x' = x^2$, x(0) = 1.
- 3. Write the auxiliary equations for $p^2 y^2q = y^2 x^2$.
- 4. What is meant by boundary value problem?
- 5. State Dirichlet problem.

SECTION - B

 $(5 \times 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. State and prove Able's formula.
- 7. Solve the Bessel equation $L(x)(t) = t^2x'' + tx' + (t^2 p^2)x = 0$, $Re \ p \ge 0$ to get the solution $J_p(t)$, the Bessel function of order p of the first kind.
- 8. State and prove Gronwall's inequality.
- 9. Show that if x(t) is a solution of the initial value problem $x' = f(t, x), x(t_0) = x_0$ on I if and only if x(t) is a solution of the integral equation $x(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$.
- 10. Solve by Charpit's method pxy + pq + qy yz = 0.
- 11. Derive the one-dimensional wave equation.
- 12. Obtain the solution of three dimensional Laplace equation by using the method of separation of variables.

SECTION - C

 $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 13. (a) Solve the Legendre equation $(1-t^2) x'' 2t x' + p(p+1) x = 0$ where p is a real number.
 - (b) If P_n is a Legendre polynomial then prove that $\int_{-1}^1 P_n^2(t) dt = \frac{2}{2n+1}$.
- 14. State and prove Picard's theorem.
- 15. Reduce the equation $(n-1)^2 \left(\frac{\partial^2 z}{\partial x^2}\right) y^{2n} \left(\frac{\partial^2 z}{\partial y^2}\right) = n y^{2n-1} \left(\frac{\partial z}{\partial y}\right)$ to canonical and find its general solution.
- 16. (a) Discuss D'Alembert's solution of wave equation.
 - (b) An insulated rod of length l has its ends A and B maintained at 0^{0} C and 100^{0} C respectively until steady state conditions prevail. If B is suddenly reduced to 0^{0} C and maintained at 0^{0} C, find the temperature at a distance x from A at time t.
- 17. Solve two dimensional Laplace's equation in plane polar coordinates (r, θ) .

