STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16\& thereafter)

SUBJECT CODE : 15MT/PC/DE14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : CORE
PAPER : DIFFERENTIAL EQUATIONS TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

$(5 \times 2=10)$

ANSWER ALL QUESTIONS

1. Find the Wronskian of e^{-t}, e^{t} and $t e^{t}$ at $t=0$.
2. Find the second approximation $x_{1}(t)$ for the initial value problem $x^{\prime}=x^{2}, x(0)=1$.
3. Write the auxiliary equations for $p^{2}-y^{2} q=y^{2}-x^{2}$.
4. What is meant by boundary value problem?
5. State Dirichlet problem.

> SECTION - B
$(5 \times 6=30)$

ANSWER ANY FIVE QUESTIONS

6. State and prove Able's formula.
7. Solve the Bessel equation $L(x)(t)=t^{2} x^{\prime \prime}+t x^{\prime}+\left(t^{2}-p^{2}\right) x=0, \operatorname{Re} p \geq 0$ to get the solution $J_{p}(t)$, the Bessel function of order p of the first kind.
8. State and prove Gronwall's inequality.
9. Show that if $x(t)$ is a solution of the initial value problem $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$ on I if and only if $x(t)$ is a solution of the integral equation $x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s$.
10. Solve by Charpit's method $p x y+p q+q y-y z=0$.
11. Derive the one-dimensional wave equation.
12. Obtain the solution of three dimensional Laplace equation by using the method of separation of variables.

SECTION - C

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

13. (a) Solve the Legendre equation $\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+p(p+1) x=0$ where p is a real number.
(b) If P_{n} is a Legendre polynomial then prove that $\int_{-1}^{1} P_{n}^{2}(t) d t=\frac{2}{2 n+1}$.
14. State and prove Picard's theorem.
15. Reduce the equation $(n-1)^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}\right)-y^{2 n}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=n y^{2 n-1}\left(\frac{\partial z}{\partial y}\right)$ to canonical and find its general solution.
16. (a) Discuss D'Alembert's solution of wave equation .
(b) An insulated rod of length l has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If B is suddenly reduced to $0^{0} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t.
17. Solve two dimensional Laplace's equation in plane polar coordinates (r, θ).
