STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE: 15MT/PC/CM14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	CORE
PAPER	:	CONTINUUM MECHANICS
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION – A

(5 X 2 = 10)

ANSWER ALL THE QUESTIONS

- 1. Define body forces and surface forces.
- 2. What is continuum configuration.
- 3. Define path lines and stream lines.
- 4. State angular momentum principle.
- 5. Define isotropy and anisotropy in elasticity.

$SECTION - B \qquad (5 X 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. Obtain the stress quadric of Cauchy.
- 7. Split the stress tensor $\begin{bmatrix} 12 & 4 & 0 \\ 4 & 9 & -2 \\ 0 & -2 & 3 \end{bmatrix}$ into spherical and deviator parts and show that the

first invariant of the deviator is zero.

8. The Lagrangian description of a deformation is given by

 $x_1 = X_1 + X_3(e^2 - 1)$, $x_2 = X_2 + X_3(e^2 - e^{-2})$, $x_3 = e^2 X_3$ where *e* is a constant. Show that the Jacobian *J* does not vanish and determine the Eulerian equations describing this motion.

- 9. Obtain the first, second and third Lagrangian strain invariants.
- 10. Obtain the Lagrangian differential form of the continuity equations.
- 11. Express the engineering constants v and E interms of the Lame constants λ and μ .
- 12. Derive Cauchy's deformation tensor and Green's deformation tensor.

SECTION – C

(3 X 20 = 60)

ANSWER ANY THREE QUESTIONS

- 13. Explain Cauchy's stress principle, principal stresses, stress invariants and stress ellipsoid.
- 14. Explain deformation gradient and displacement gradient.
- 15. (i) Explain the small deformation theory.(ii) Obtain the material derivative.
- 16. State the linear momentum principle. Obtain the equations of motion and equilibrium equations.
- 17. Write elastic constant matrix for anisotropic body. Obtain it for the plane of symmetry and orthotropic material. When are the plane and axial symmetry equivalent?

#