STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 & thereafter)

SUBJECT CODE: 15MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2018 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE	
PAPER	: COMPLEX ANALYSIS	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION-A

ANSWER ALL QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Compute $\int_{|z|=1} |z-1| |dz|$.
- 2. When is a cycle γ said to be homologous to zero?
- 3. State Poisson –Jensen's formula.
- 4. Define locally bounded family of functions.
- 5. State Schwarz-Christoffel formula.

SECTION-B ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 6. State and prove Cauchy's integral formula.
- 7. If u_1 and u_2 are two harmonic functions in a region Ω then prove that

 $\int_{\gamma} u_1 * du_2 - u_2 * du_1 = 0$, for every cycle γ which is homologous to zero in Ω .

- 8. Show that a region Ω in the complex plane is simply connected if and only if $n(\gamma, a) = 0$ for all cycles γ in Ω and all points *a* which do not belong to Ω .
- 9. Show that the necessary and sufficient condition for the absolute convergence of the product $\prod_{n=1}^{\infty} (1 + a_n)$ is the convergence of the series $\sum_{n=1}^{\infty} |a_n|$.
- 10. If $p_1, p_2, \ldots, p_n, \ldots$ is the ascending sequence of prime numbers and $\sigma = Re \ s > 1$, then prove that $\frac{1}{\zeta(s)} = \prod_{n=1}^{\infty} (1 - p_n^{-s})$ where $\zeta(s)$ is the Riemann zeta function.
- 11. Show that the family F of functions defined on a fixed region Ω of the complex plane is totally bounded if and only if to every compact set E ⊂ Ω and every ε > 0 it is possible to find functions f₁, f₂, . . , f_n ∈ F such that every f ∈ F satisfies d(f, f_j) < ε on E for some f_j.
- 12. Show that under a conformal mapping a source or sink at a given point corresponds to an equal source or sink at the image of that point.

SECTION-C ANSWER ANY THREE QUESTIONS: (3×20 =60)

- 13. State and prove Cauchy's theorem for a rectangle.
- 14. (i) If f is analytic and non-zero in a simply connected region Ω in the complex plane then show that it is possible to define a single valued analytic branch of logf(z)and $\sqrt[n]{f(z)}$ in Ω .
 - (ii) Derive Poisson's formula for harmonic functions.
- 15. (i) Derive the formula $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 \frac{z^2}{n^2}\right)$. (ii) Derive the functional equation $\zeta(s) = 2^s \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)$.
- 16. State and prove Arzela'stheorem.
- 17. State and prove Riemann mapping theorem.