SUBJECT CODE:15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2017
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : VECTOR ANALYSIS AND APPLICATIONS
TIME : 3 HOURS MAX. MARKS : 100

SECTION-A

Answer All the questions

1. If $\phi(x, y, z)=x^{2} y+y^{2} x+z^{2}$ find Grad ϕ at the point $(1,1,1)$.
2. Find the maximum value of the directional derivative of the function $\phi=2 x^{2}+3 y^{2}+5 z^{2}$ at the point $(1,1,-4)$.
3. Show that the vector $3 x^{2} y \vec{\imath}-4 x y^{2} \vec{\jmath}+2 x y z i s$ solenoidal
4. If $\vec{F}=x z 3 \vec{\imath}-2 x y z \vec{\jmath}+x z \vec{k}$ find $\operatorname{curl} \vec{F}$ at $(1,2,0)$.
5. If $\overrightarrow{f(t)}=\left(3 t^{2}-1\right) \vec{\imath}+(2-6 t) \vec{\jmath}-4 t \vec{k}$ find $\int_{2}^{3} \overrightarrow{f(t)} d t$.
6. If $\vec{F}=y z \vec{\imath}+z x \vec{\jmath}-x y \vec{k}$ find $\int_{c} \vec{t} \overrightarrow{d r}$ where c is given by $x=t, y=t^{2}, z=t^{3}$ from $P(0,0,0)$ to $Q(2,4,8)$.
7. Find the unit vector normal to the surface $x^{2}+3 y^{2}+2 z^{2}=6$ at the point $(2,0,1)$
8. Show that the surface $5 x^{2}-2 y z-9 x=0$ and $4 x^{2} y+z^{2}-4=0$ are orthogonal at the point $(1,-1,2)$.
9. State Stoke's theorem.
10. State Green's theorem.

SECTION-B

Answer any FIVE questions
11. If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $r=|\vec{r}|$ prove that
a) $\nabla\left\{\frac{1}{r}\right\}=\frac{\overrightarrow{-r}}{r^{3}}$
b) $\nabla r^{n}=n r^{n-2} \vec{r}$
12. Find the angle between the normal to the surface $x y-z^{2}=0$ at the points $(1,4,-2)$ and ($-3,-3,-3$).
13. Prove that curl of curl $\stackrel{\vec{F}}{\vec{F}}=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$
14. The acceleration of a particle at any time $\vec{a}=12 \cos 2 t \vec{\imath}-8 \sin 2 t \vec{\jmath}+16 t \vec{k}$. If the velocity \vec{v} and the displacement are zero at time $t=0$ find the velocity and displacement at any time t.
15. Find $\int_{c} \vec{F} \cdot d \vec{r}$ where $\vec{F}=z \vec{\imath}+x \vec{\jmath}+y \vec{k}$ along the arc of the curve $\vec{r}=\operatorname{cost} \vec{\imath}+\sin t \vec{\jmath}+t \vec{k}$ from $t=0$ to $t=2 \pi$.
16. Find the equation of the tangent plane and normal to the surface $x y z=4$ at the point (1,2,2)
17. Evaluate $\iint\left(y^{2} z \vec{\imath}+z^{2} x \vec{\jmath}+x^{2} y \vec{k}\right) d s$ where s is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying in the positive octant.
18. Using divergence theorem evaluate $\iint \vec{F} \cdot \vec{n} d s$ where $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{\jmath}+y z \vec{k}$ and S is the surface of the cube bounded by the planes $x=0, x=2, y=0, y=2$, $z=0, z=2$.

SECTION-C
 Answer any TWO questions

19. a) Find ϕ if $\nabla \phi=(y+\sin z) \vec{\imath}+x \vec{\jmath}+\cos z \vec{k}$.
b) Prove that $\nabla \times(\vec{u} \times \vec{v})=[(\vec{v} \cdot \nabla) \vec{u}-(\nabla \cdot \vec{u}) \vec{v}]-[(\vec{u} \cdot \nabla) \vec{v}-(\nabla \cdot \vec{v}) \vec{u}]$.
20. a) Find $\int \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(x^{2}-y^{2}\right) \vec{\imath}+2 x y \vec{\jmath}$ and c is the square bounded by the co-ordinate axes and the lines $x=a, y=a$.
b) If $U=x+y+z, V=x^{2}+y^{2}+z^{2}, W=y z+z x+x y$ prove that $(\operatorname{grad} U) \cdot(\operatorname{grad} V \times \operatorname{grad} W)=0$
21. a) Verify Gauss divergence theorem for $\vec{F}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ taken over the regim bounded by the plane $x=0, x=a, y=0, y=a$.
b) Verify Stoke's theorem for $\vec{F}=x^{2} \vec{\imath}+x y \vec{\jmath}$ taken round the square in the $x y$ plane whose sides are $x=0, x=a, y=0, y=a$.

hachachal

