STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16)

SUBJECT CODE: 15MT/MC/RA55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2017 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	PRINCIPLES OF REAL ANALYSIS
TIME	:	3 HOURS

(10X2=20)

MAX. MARKS : 100

SECTION – A ANSWER ALL THE QUESTIONS

- 1. When do you say that f(x) approaches 'L' (where $L \in R$) as 'x' approaches 'a'?
- 2. Prove by an example that if f(a) is not defined, then 'f' cannot be continuous at the point 'a'.
- 3. State the definition of a Cauchy sequence in a Metric space :
- 4. Why every subset of R_d is Open?
- 5. If A is a bounded subset of a metric space $\langle M, \rho \rangle$, define the diameter of A.
- 6. Define the "Complete Metric Space".
- 7. State the Heine-Borel property of a metric space *M*.
- 8. Define a Uniformly Continuous function.
- 9. Define the upper integral of f' over an interval [a, b].
- 10. State "The Law of the Mean".

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. The set of all n-tuples of real numbers, denoted by R^n , is a Metric space Justify.
- 12. If f and g are real valued functions, if 'f' is continuous at 'a' and if 'g' is continuous at 'f(a)', then prove that gof is continuous at 'a'.
- 13. Prove that the arbitrary union of open subsets of a Metric space M is anopen subset of M.
- 14. Let 'f' be a continuous function from a metric space M_1 into a Metric space M_2 . If the domain of 'f' is connected, prove that the range of f' is also connected.
- 15. Let f be a continuous function from the Compact metric space M_1 into the Metric space M_2 . Using the concept of open covering, prove that the range $f(M_1)$ is also compact.
- 16. Let 'f' be a bounded function on [a, b]. If σ and τ are any two subdivisions of [a, b], then prove that $U[f; \sigma] \ge L[f; \tau]$.
- 17. If the real-valued function 'f' has a derivative at the point $c \in \mathbb{R}^1$, then prove that 'f' is continuous at 'c'.

(2X20=40)

SECTION – C ANSWER ANY TWO QUESTIONS

- 18. (a) Prove that 'f' is continuous at 'a', if and only if, $\lim_{n\to\infty} x_n = a$ implies $\lim_{n\to\infty} f(x_n) = f(a)$ (7 + 7)
 - (b) Let $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be metric spaces and let $f: M_1 \to M_2$. Prove that f' is continuous on M_1 if and only if $f^{-1}(G)$ is open in M_1 , whenever G is open in M_2 (3 + 3)
- 19. (a) Let $\langle M, \rho \rangle$ be a metric space. Prove that a subset *A* of *M* is totally bounded if and only if every sequence of points of *A* contains Cauchy subsequence.

(6 + 6)

(b) Let $< M_1, \rho_1 >$ be a compact metric space. If f is a continuous function from M_1 into a Metric space $< M_2, \rho_2 >$, then prove that 'f' is uniformly continuous on M_1 .

(8)

20. (a) If 'f' and 'g' both have derivatives at $c \in \mathbb{R}^1$, then prove that

.

$$(fg)' = f'(c)g(c) + f(c)g'(c)$$
(5)

(b) State and prove the Fundamental Theorem of Calculus. (15)