SUBJECT CODE : 15MT/MC/DC14

## B. Sc. DEGREE EXAMINATION, NOVEMBER 2017 <br> BRANCH I - MATHEMATICS <br> FIRST SEMESTER

| COURSE | : MAJOR - CORE |
| :--- | :--- |
| PAPER | $:$ DIFFERENTIAL CALCULUS |
| TIME | $: 3$ HOURS |

MAX. MARKS : 100

> SECTION - A
(10X2=20)

## ANSWER ALL THE QUESTIONS

1. Write down the nth derivative of $\mathrm{e}^{\mathrm{ax}}$.
2. If $x y=a e^{x}+b e^{-x}$, prove that $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y=0$.
3. Find the envelope of the family of circles $a^{2}-2 a(x+1)+x^{2}+y^{2}=0$.
4. Find the envelope of the family of straight lines $y=m x+\frac{a}{m}$, the parameter being ' $m$ '.
5. Find the radius of curvature for the curve $x y=30$ at the point $(3,10)$.
6. Find the coordinates of the centre of curvature of a curve $y=x^{2}$ at $(1 / 2,1 / 4)$.
7. Define evolute of a curve.
8. Write down the formulae for finding the radius of curvature.
9. State Lagrange's method of undetermined multipliers.
10. Define saddle points.

## SECTION - B <br> ANSWER ANY FIVE QUESTIONS

$(5 \times 8=40)$
11. Find $y_{n}$, if $y=\frac{x^{2}}{(x+2)(x-1)^{2}}$.
12. Find the envelope of the family of straight lines $y+t x=2 a t+a t^{3}$, the parameter being $t$.
13. Show that the radius of curvature at any point of the catenary $y=c \cosh (x / c)$ is equal to the length of the portion of the normal intercepted between the curve and the $x$-axis.
14. Show that the evoluateof the cycloid $x=a(\theta-\sin \theta)$ and $y=a(1-\cos \theta)$ is another cycloid.
15. Find the radius of curvature of the curve $r^{n}=a^{n} \cos n \theta$.
16. Find the p-r equation of the cardioids $r=a(1-\cos \theta)$.
17. Trace the curve $y=\left(x^{2}+1\right) /\left(x^{2}-1\right)$.

## SECTION - C

$(2 \times 20=40)$

## ANSWER ANY TWO QUESTIONS

18. (a) If $y=\sin \left(m \sin ^{-1} x\right)$, prove that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0 .
$$

(b) Find the envelope of the circles drawn on the radius vectors of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as diameter
19. (a) Find the coordinates of the centre of curvature of the curve $y^{2}=4 a x$ at the point ' $t$ '.
(b) Find the chord of curvature through the focus of a parabola and show that it is equal to four times the focal distance of the point.
20. Discuss the maxima and minima of the function $x^{3} y^{2}(6-x-y)$.

