STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16& thereafter)

SUBJECT CODE : 15MT/MC/AT14

MAX. MARKS : 100

B. Sc. DEGREE EXAMINATION, NOVEMBER 2017 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	: MAJOR – CORE
PAPER	: ALGEBRA AND TRIGONOMETRY
TIME	: 3 HOURS

SECTION – A

(10X2=20)

ANSWER ALL THE QUESTIONS

- 1. Define Reciprocal Equation.
- 2. Change the equation $2x^4 3x^3 + 3x^2 x + 2 = 0$ into another in which the coefficient of x^4 will be unity.
- 3. Find the quotient and the remainder when $x^5-4x^4+3x^3-4x+6=0$ is divided by x-3.
- 4. Show that $x^6 + 3x^2 5x + 1 = 0$ has at least four imaginary roots.
- 5. Define: i)Unitary matrix

ii)Orthogonal matrix

- 6. Calculate A^4 when $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$
- 7. Prove that $2\sinh x \cosh x = \sinh 2x$.
- 8. Find approximately the value of θ in radians if $\frac{\sin\theta}{\theta} = \frac{863}{864}$.
- 9. Define: logarithm of a complex quantity.
- 10. Show that $Log(iy) = logy + 2n\pi i + \frac{\pi i}{2}$.

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. Solve the equation $2x^3 11x^2 + 10x + 8 = 0$ given that one root is twice the other.
- 12. If α, β, γ are the roots of $x^3 + 2x^2 + 3x + 3 = 0$, prove that $\frac{\alpha}{\alpha+1} + \frac{\beta}{\beta+1} + \frac{\gamma}{\gamma+1} = 5$.
- 13. Diminish the roots of the equation $x^4-4x^3-7x^2+22x+24=0$ by 1 and hence solve the equation .
- 14. If α, β, γ are the roots of $x^3 + px^2 + qx + r = 0$ find the equation whose roots $\operatorname{are}(\alpha + \beta), (\beta + \gamma), (\gamma + \alpha)$ and show that $(\alpha + \beta), (\beta + \gamma), (\gamma + \alpha) = r pq$.
- 15. Find the eigen vector of thematrix $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix}$ corresponding to one of the eigen

values.

- 16. Express $\frac{\sin \theta}{\sin \theta}$ in terms of $\cos \theta$
- 17. If $cos(x + iy) = cos\theta + isin\theta$, prove that cos2x + cosh2y = 2.

15MT/MC/AT14

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

18. a) Solve
$$6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$$
.

b)
$$\frac{1+tanhx}{1-tanhx} = \cosh 2x + \sinh 2x.$$
(14+6)

- 19. a) Find the positive root of $2x^3 6x^2 + 5 = 0$ which lies between 1 and 2 using Horner's method.
 - b) Express $\tanh^{-1}x$ in logarithmic form. (14+6)

20. a) Find the characteristic equation of the matrix A = $\begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -2 \\ 1 & -1 & 2 \end{bmatrix}$ and hence determine its inverse.

b) Find the product of the eigen values of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ -2 & 0 & 0 \\ 4 & 5 & 0 \end{pmatrix}$ (14 + 6)