SUBJECT CODE : 15MT/MC/AT14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2017
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ ALGEBRA AND TRIGONOMETRY
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

(10X2=20)

ANSWER ALL THE QUESTIONS

1. Define Reciprocal Equation.
2. Change the equation $2 x^{4}-3 x^{3}+3 x^{2}-x+2=0$ into another in which the coefficient of x^{4} will be unity.
3. Find the quotient and the remainder when $x^{5}-4 x^{4}+3 x^{3}-4 x+6=0$ is divided by $x-3$.
4. Show that $x^{6}+3 x^{2}-5 x+1=0$ has at least four imaginary roots.
5. Define: i)Unitary matrix
ii)Orthogonal matrix
6. Calculate A^{4} when $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$
7. Prove that $2 \sinh x \cosh x=\sinh 2 x$.
8. Find approximately the value of θ in radians if $\frac{\sin \theta}{\theta}=\frac{863}{864}$.
9. Define: logarithm of a complex quantity.
10. Show that $\log (i y)=\log y+2 n \pi i+\frac{\pi i}{2}$.

SECTION - B

ANSWER ANY FIVE QUESTIONS

(5X8=40)
11. Solve the equation $2 x^{3}-11 x^{2}+10 x+8=0$ given that one root is twice the other.
12. If α, β, γ are the roots of $\mathrm{x}^{3}+2 \mathrm{x}^{2}+3 \mathrm{x}+3=0$, prove that $\frac{\alpha}{\alpha+1}+\frac{\beta}{\beta+1}+\frac{\gamma}{\gamma+1}=5$.
13. Diminish the roots of the equation $x^{4}-4 x^{3}-7 x^{2}+22 x+24=0$ by 1 and hence solve the equation.
14. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$ find the equation whose roots $\operatorname{are}(\alpha+\beta),(\beta+\gamma),(\gamma+\alpha)$ and show that $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)=r-p q$.
15. Find the eigen vector of thematrix $\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3\end{array}\right)$ corresponding to one of the eigen values .
16. Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$
17. If $\cos (x+i y)=\cos \theta+i \sin \theta$, prove that $\cos 2 x+\cosh 2 y=2$.

SECTION - C
 ANSWER ANY TWO QUESTIONS

$(2 \times 20=40)$
18. a) Solve $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
b) $\frac{1+\tanh x}{1-\tanh x}=\cosh 2 \mathrm{x}+\sinh 2 \mathrm{x}$.
$(14+6)$
19. a) Find the positive root of $2 x^{3}-6 x^{2}+5=0$ which lies between 1 and 2 using Horner's method.
b) Express $\tanh ^{-1} \mathrm{x}$ in logarithmic form.
20. a) Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & -2 \\ 1 & -1 & 2\end{array}\right]$ and hence determine its inverse.
b) Find the product of the eigen values of the matrix $\left(\begin{array}{ccc}1 & 2 & -1 \\ -2 & 0 & 0 \\ 4 & 5 & 0\end{array}\right) \quad(14+6)$

