STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015–16)

SUBJECT CODE : 15MT/MC/AS55

B. Sc. DEGREE EXAMINATION, NOVEMBER 2017 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	ALGEBRAIC STRUCTURES
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION – A

Answer all questions:

(10 X 2 = 20)

- 1. Is (Z, \cdot) a group? If not, why?
- 2. Define the term 'Groups'.
- 3. State Fermat's theorem.
- 4. If G is a finite group and $a \in G$ then Prove that $a^{o(G)} = e$
- 5. Find the orbits and cycles of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$
- 6. Define 'Inner Automorphism.'
- 7. State the 'Pigeonhole principle'.
- 8. When do you say that a ring is a division ring.
- 9. If U is an ideal of R and $1 \in U$, Prove that U = R.
- 10. Define maximal ideal.

SECTION – B

Answer any five questions:

(5 X 8 = 40)

- 11. State and Prove the necessary and sufficient condition of a subgroup.
- 12. Show that the cyclic groups are abelian but the converse is false.
- 13. Prove that a subgroup N of G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G.
- 14. If φ is a homomorphism of G into \overline{G} with kernel k then prove that k is a normal subgroup of G.
- 15. If G is a group then show that A (G), the set of all automorphisms of G, is also a group.
- 16. Prove that a finite integral domain is a field.
- 17. If R is a commutative ring with unit element whose only ideals are (o) and R itself prove that R is a field.

SECTION - C

Answer any two questions:

 $(2 \times 20 = 40)$

18. a) If H and K are finite subgroups of G of orders O(H) and O(K) respectively then

prove that $O(HK) = \frac{O(H).O(K)}{O(H \cap K)}$

- b) State and prove Lagrange's theorem.
- 19. a) State and prove the fundamental theorem of homomorphism.

b) Show that every group is isomorphic to a subgroup A(S) for some appropriate S.

- 20. a) If U is a ideal of the ring R, then prove that R/U is a ring and is a homomorphic image of R.
 - b) If R is a commutative ring with unit element and M is an ideal of R then prove that M is a maximal ideal of R if and only if R/M is a field.