# STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86.

(For the academic year 2015-2016 & thereafter)

Subject Code: 15MT/PI/FM24

CORE: POSTGRADUATE INDEPENDENT ELECTIVE

PAPER: FINANCIAL MATHEMATICS

TIME: 3 HRS

**MARKS: 100** 

### Section - A

#### Answer all the questions

 $(10 \times 2 = 20)$ 

- 1. Define Brownian motion.
- 2. What is the volatility parameter?
- 3. Suppose that you borrow amount P to be repaid after one year along with rate r per year compounded semi-annually. How much is owed in a year?
- 4. If a bank offers interest at a nominal rate of 5% compounded continuously, what is the effective interest rate per year?
- 5. State law of one price.
- 6. Define convex function.
- 7. Define Risk-Neutral probabilities.
- 8. Prove  $C(s, t, K, \sigma, r) = s \Phi(\omega) K e^{-rt} \Phi(\omega \sigma \sqrt{t})$
- 9. Prove  $E[I] = P(St > K) = \Phi(\omega \sigma\sqrt{t})$
- 10. What is meant by "Value At Risk"?

## Section - B

## Answer any five questions

 $(5 \times 8 = 40)$ 

- 11. Discuss Geometric Brownian Motion as a limit of simpler models.
- 12.If you borrow Rs.1000 for one year at an interest rate of 8% per year compounded quarterly how much do you owe at the end of the year?
- 13. Explain: One should never exercise an American style call options before its expiration time t.
- 14. State and prove the Arbitrage theorem.
- 15. Initial price of stock is 100 and the price after one period is assumed to be either 200 or 50. At a cost of C per share we can purchase at time 0 the

options to buy the stock at time 1 for the price of 150. For what value of C is no sure win possible?

- 16. Prove  $e^{-rt}E[IS(t)] = s \Phi(\omega)$ .
- 17. State and prove Jensen's inequality.

# Section - C

# Answer any two questions

 $(2 \times 20 = 40)$ 

- 18.a) Discuss rate of return.
  - b) Find the rate of return from an investment that for an initial payment of 100 yields returns of 60 at the end of each of the first two periods.

(10+10)

- 19. The September 4, 1998, edition of the New York Times gives the following listing for the price of a German Mark(or DM)
  - today: .5777;
  - 90-day forward: .5808

Why are these prices different?

20. Derive the Black - Scholes option pricing formula