STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE : 15MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2018 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: COREPAPER: MEASURE THEORY AND INTEGRATIONTIME: 3 HOURSMAX. MARKS : 100

SECTION - A

Answer all the questions:

1. Show that every countable set has measure zero.

2. Given an example of a function such that |f| is measureable but f is not.

3. When do you say a function f defined on $(-\infty, \infty)$ is Riemann integrable.

4. Write any two examples of functions that are strictly convex on *R*.

5. Define mutually singular measures.

SECTION – B

Answer any five questions:

- 6. Prove that every interval is measurable.
- 7. Let *T* be a measurable set of positive measure and let $T^* = [x y: x \in T, y \in T]$. Show that T^* contains an interval $(-\alpha, \alpha)$ for some $\alpha > 0$.
- 8. Let *f* and *g* be non-negative measurable functions. Prove that $\int f dx + \int g dx = \int (f + g) dx.$
- 9. Let ν be a signed measure and let μ, λ be measures on [[X, S]], such that λ, μ, ν are σ -finite, $\nu \leq \mu$ and $\mu \leq \lambda$, then prove that $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} [\lambda]$.
- 10. Prove that every function convex on an open interval is continuous.
- 11. Let $\{f_n\}$ be a sequence of measurable functions such that $|f_n| \le g$, where g is integrable and let $\lim f_n = f \ a. e$. Prove that f is integrable and $\lim \int f_n dx = \int f dx$.
- 12. Prove that a countable union of sets positive with respect to a signed measure ν is a positive set.

5×2=10

5×6=30

SECTION - C

Answer any three questions:

3×20=60

- 13. (a) Prove that the outer measure of an interval equals its length.
 - (b) Prove that if $m^*(E) < \infty$ then *E* is measurable if, and only if, for every $\varepsilon > 0$, there exists disjoint finite intervals $I_1, ..., I_n$ such that $m^*(E\Delta \bigcup_{i=1}^n I_i) < \varepsilon$.
- 14. (a) Let *c* be any real number and let *f* and *g* be real valued measurable functions defined on the same measurable set *E*. Prove that f + c, c f, f + g, f g and f g are also measurable.
 - (b) If µ is a measure on a σ − ring S, then prove that the class S of sets of the form EΔN for any sets E, N such that E ∈ S while N is contained in someset in S of zero measure, is a σ − ring, and the set function µ defined by µ(EΔN) = µ(E) is a complete measure on S.
- 15. (a) State and prove Fatou's lemma.
 - (b) Let f be a bounded function defined on the finite interval [a, b]. Prove that f is Riemann integrable over [a, b] if, and only if, it is continuous a.e.
- 16. (a) If 1 ≤ p < ∞ and {f_n} is a sequence in L^p(μ) such that ||f_n f_m||_p → 0, as n, m → ∞, then prove that there exists a function f and a subsequence {n_i} such that limf_{n_i} = f a. e. Also prove that f ∈ L^p(μ) and lim ||f_n f_m||_p = 0.
 - (b) If $\{f_n\}$ is a sequence of measurable functions which is fundamental in measure then prove that there exists a measurable function f such that $f_n \to f$ is measure.
- 17. (a) Let ν be a signed measure on [[X, S]]. Let $E \in S$ and $\nu(E) > 0$. Prove that there exists *A*, a set positive with respect to ν , such that $A \subseteq E$ and $\nu(A) > 0$.
 - (b) State and prove Lebesgue Decomposition theorem.

#