# STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 

(For candidates admitted from the academic year 2015-16 \& thereafter)
SUBJECT CODE : 15MT/PC/LA24

## M. Sc. DEGREE EXAMINATION, APRIL 2018 <br> BRANCH I - MATHEMATICS <br> SECOND SEMESTER

## COURSE : CORE <br> PAPER : LINEAR ALGEBRA <br> TIME : 3 HOURS

MAX. MARKS : 100

## Section-A <br> Answer ALL the questions

1. If $M$ is an $R$-module, then when $M$ is said to be the direct sum.
2. When a linear transform is said to be similar?
3. Define elementary divisors of $T$ in rational canonical form.
4. When do you say the subspace of a vector space is invariant under $T$ ?
5. When a matrix $B(n x n)$ is orthogonally equivalent to $A(n x n)$ ?

## Section-B <br> Answer any FIVE questions

6. Prove that "Any finite abelian group is the direct product (sum) of cyclic groups."
7. If $V$ is n-dimensional over $F$ and if $T \in A(V)$ has all its characteristic roots in $F$, then prove that $T$ satisfies a polynomial of degree $n$ over $F$.
8. If $u \in V_{1}$ is such that $\mathrm{uT}^{\mathrm{n}_{1}-\mathrm{k}}=0$ where $0<k \leq n_{1}$, then prove that $u=u_{0} T^{k}$ for some $u_{0} \in V_{1}$.
9. If $M$, of dimension $m$, is cyclic with respect to $T$, then prove that the dimension of $M T^{k}$ is $m-k$ for all $k \leq m$.
10. Let $V$ be an inner product space and $T$ a self- adjoint linear operator on $V$. Then prove that each characteristic value of $T$ is real, and characteristic vectors of $T$ associated with distinct characteristic values are orthogonal.
11. Let $f$ be a form on a finite-dimensional complex inner product space $V$. Then prove that there is an orthonormal basis for $V$ in which the matrix of $f$ is upper-triangular.
12. Let $T$ be a linear operator on an $n$-dimensional vector space, prove that the characteristic and minimal polynomials for $T$ have the same roots, except for multiplicities.

## Section-C <br> Answer any THREE questions

13. Let $R$ be a Euclidean ring; then prove that any finitely generated $R$-module, $M$, is the direct sum of a finite number of cyclic submodules.
14. If $T E A(V)$ has all its characteristic roots in $F$, then prove that there exists a basis of $V$ in which $m(T)$ is triangular.
15. Let $T E A(V)$ has all its distinct characteristic roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ in $F$ then prove that there exist a basis of $V$ for which the matrix of $T$ is in Jordan form.
16. Let $T$ be a linear operator on a finite dimensional vector space $V$. If $f$ is the characteristic polynomial for $T$, then prove that $f(T)=0$; in other words, the minimal polynomial divides the characteristic polynomial for $T$.
17. a) Let $V$ be a finite-dimensional inner product space and $f$ a form on $V$. Then prove that there is a unique linear operator $T$ on $V$ such that $f(\alpha, \beta)=(T \alpha \mid \beta)$ for all $\alpha, \beta$ in $V$ and the map $f \rightarrow \mathrm{~T}$ is an isomorphism of the space of forms onto $L(V, V)$.
b) Suppose the two matrices $A, B$ in $F_{n}$ are similar in $k_{n}$ where $K$ is an extension of $F$. Then prove that $A$ and $B$ are already similar in $F_{n}$.
