STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015–16 & thereafter)

SUBJECT CODE: 15MT/PC/DG44

M. Sc. DEGREE EXAMINATION, APRIL 2018 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	: CORE
PAPER	: DIFFERENTIAL GEOMETRY
TIME	: 3 HOURS

MAX. MARKS : 100

SECTION - A (5x2=10) ANSWER ALL THE QUESTIONS

- 1. Find the speed for the logarithmic spiral.
- 2. When is a surface patch said to be regular.
- 3. Calculate the first fundamental form of the surface $\bar{\sigma}(u, v) = \bar{a} + u\bar{p} + v\bar{q}$.
- 4. Write the second fundamental form.
- 5. Define gaussian curvature.

SECTION - B (5x6=30) ANSWER ANY FIVE QUESTIONS

- 6. Find the curvature of the circular helix $\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta), -\infty < \theta < \infty$ where 'a' and 'b' are constants.
- 7. Let $\gamma(t)$ be a regular curve is \mathbb{R}^3 with nowhere vanishing curvature, then show that its torsion is $= \frac{(\dot{\gamma} \times \ddot{\gamma}).\ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}$.
- 8. If $f: S_1 \to S_2$ be a diffeomorphism and if $\overline{\sigma}_1$ is an allowable surface patch on S_1 then prove that to $f \circ \overline{\sigma}_1$ is allowable surface patch on S_2 .
- 9. Show that the area of a surface patch is unchanged by reparametrisation.
- 10. State and prove Meusnier's Theorem.
- 11. Show that a curve γ on a surface is a geodesic if and only if for any part $\gamma(t) = \overline{\sigma}(u(t), v(t))$ of γ contained in a surface patch $\overline{\sigma}$ of *S* the following two equations are satisfied

$$\frac{d}{dt}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)$$
$$\frac{d}{dt}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)$$

where $E du^2 + 2F du dv + G dv^2$ is the first fundamental form of $\bar{\sigma}$.

12. With the usual notation, show that

$$\bar{e}'_{u}. \ \bar{e}''_{v} - \bar{e}''_{u} \bar{e}'_{v} = \lambda' \mu'' - \lambda'' \mu' = \alpha_{v} - \beta_{u} = \frac{LN - M^{2}}{(EG - F^{2})^{1/2}}$$

..2

SECTION - C (3x20=60) ANSWER ANY THREE QUESTIONS

- 13. a) Prove that a parametric curve has a unit speed reparametrisation if and only if it is regular.
 - b) State and prove the Frenet-Serret equation..
- 14. a) Show that the unit sphere S^2 is a smooth surface.
 - b) Let U and \tilde{U} be open subset of \mathbb{R}^2 and let $\bar{\sigma}: U \to \mathbb{R}^3$ be regular surface patches. If $\bar{\varphi}; \tilde{U} \to U$ be an bijective smooth map with smooth inverse map $\varphi^{-1}: U \to \tilde{U}$ then prove that $\bar{\tilde{\sigma}} = \bar{\sigma}. \bar{\varphi}$ is a regular surface patch.
- 15. a) Show that a diffeomorphism $f: S_1 \to S_2$ is a isometry if and only if for any surface patch $\overline{\sigma}_1$ of S_1 , show that the patches $\overline{\sigma}_1$ and $f \circ \overline{\sigma}_1$ of S_1 and S_2 have the same first fundamental form.
 - b) Show that any tangent developable is isometric to a plane.
- 16. a) If $\gamma(t) = \overline{\sigma}(u(t), v(t))$ is a unit-speed curve on a surface path $\overline{\sigma}$, prove that its normal curvature is given by $\kappa_n = L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2$ where $Ldu^2 + 2Mdudv + Ndv^2$ is the second fundamental form of $\overline{\sigma}$.
 - b) Let κ_1 and κ_2 be the principal curvatures at a point *P* of a surface patch $\overline{\sigma}$ then show that
 - i) κ_1 and κ_2 are real.
 - ii) If $\kappa_1 = \kappa_2 = \kappa$ (say) then $\mathcal{F}_{II} = \kappa \mathcal{F}_I$ and hence every tangent vector to $\overline{\sigma}$ at *P* is a principal vector.
- 17. a) Prove that a curve on a surface is a geodesic if and only if its geodesic curvature is zero everywhere.
 - b) Show that any point of a surface of constant gaussian curvature is contained in a patch that is isometric to parts of a plane, a sphere or a pseudo sphere.

###