STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-16)

SUBJECT CODE: 15PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2018 BRANCH III - PHYSICS SIXTH SEMESTER

PA	OURSE : PER : ME :	MAJOR – CORE QUANTUM MECHA 3 HOURS.	NICS AND RELATIV M	ITY AX. MARKS : 100
			SECTION – A	
AN I	SWER ALL QU Choose the Cor			$(30 \times 1 = 30)$
1.	The de Broglie w V is proportional		of charge e accelerated to	a potential difference
	a. V	b. 1/V	$c.\sqrt{V}$	d. 1 / \sqrt{V}
2.	For a dispersive	medium		
	a. $v_p = v_g$	b. $v_p > v_g$	$c. v_p < v_g$	d. $v_p = 1$
3.	The de Broglie w	avelength of an electron	travelling at one tenth tl	he speed of light
	a. 0.024 nm	b. 0.024 A.U	c. 2.4 nm	d. 2.4 A.U
4.	The energy of a p	particle in a square well	of length L is proportiona	al to
	a. L^2	b. $1 / L^2$	c. \sqrt{L}	$\mathrm{d.1}$ / \sqrt{L}
5.	For a normalized	wave function $ \psi ^2 d\tau =$	=	
	a. 0	b.1	c1	$d.\infty$
6.	The minimum en	ergy of an electron in a l	box of width 1 A ⁰ is	
	a. 13.6 eV	b. 0 eV	c. 38 eV	d. 38 J
7.	The eigen value	of parity operator P is		
	a. 0	b. 1	c1	d. <u>±</u> 1
8.	[P, H] =			
	a. 0	b. 1	c1	d. <u>±</u> 1
9.	$[L^2, Lz] =$			_
	a. 0	b. 1	c1	d.± 1
10.	In Newtonian me	echanics, the mass of a be	ody does not depend on.	
	a. position	b.time	c. displacement	d.velocity
11.	Accelerated fram	es are called	•	·
	a. inertial	b. non inertial	c. static	d. dynamic
12.	Explanation for r	negative result of Michel	son Morley experiment v	was given by
	a. Einstein	b. Newton	c. Lorentz	d. Galileo
13.	A rod of 1m leng	th moving a 0.6 c appear	rs to be at what length fo	or an observer in earth?
	a. 1m	b. 1.1 m	c. 0.8 m	d. 1.2 m
14.	The clock in an i	moving rocket will appear	ar to go slower than the	clock on earth's surface
	by a factor		-	
	a. $\sqrt{(1-v^2/c^2)}$	b. $(1 - v^2/c^2)$	c. $\sqrt{(1-c^2/v^2)}$	d. $(1 - c^2/v^2)$
15.	•		nass is twice its rest mas	
	a. 0.75 c	b. $\sqrt{0.75}c$	c. 0.25 c	d. $\sqrt{0.25}c$
		- · · - · - ·	- · · · · · · ·	

						-
II	Fill	in	the	h	an	zc.
	1 111	111	un		ш	17.7.

16.	The de Broglie wave velocity $v_p = \underline{\hspace{1cm}}$				
17.	The quantum mechanical momentum operator $p_x = \underline{\hspace{1cm}}$				
18.	[L-, L-]=				
19.	Michelson Morley experiment suggests that there is nomotion				
	between earth and ether.				
20.	An object which appears spherical to an observer at rest relative to it, will				
	appear for a moving observer.				

III State whether true or false:

- 21. The Bohr complementary principle states that particle and wave aspects of a physical entity are complementary and can be exhibited at same time.
- 22. The expectation value <x>of the position of a particle trapped in a box L wide is L/2.
- 23. Parity operator is a Hermitian operator.
- 24. Laws of Physics are same in all non inertial frames of reference.
- 25. The rest energy of an electron is 0.51 MeV.

IV Answer briefly:

- 26. State Superposition Principle.
- 27. Give Schroedinger's time independent equation.
- 28. Give the commutation relation between Hamiltonian H and momentum p.
- 29. Show that for v<< c, Lorentz transformation reduces to Galilean transformation.
- 30. Give the relativistic formula for kinetic energy.

SECTION - B (5 X 5 = 25)

ANSWER ANY FIVE QUESTIONS:

- 31. What is the kinetic energy of a proton whose de Broglie wavelength is 1 fm.
- 32. Calculate the permitted energy levels of an electron, in a box 1 A. U wide.
- 33. Explain the complete parity set.
- 34. Discuss the negative result of Michelson Morley experiment.
- 35. How fast should a rocket have to go relative to an observer for is length to be contracted to 99% of its length at rest.
- 36. Derive Galilean transformation equations.
- 37. Calculate the kinetic energy of an electron moving with a velocity of 0.98 times the velocity of light in the laboratory system.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 38. Discuss Davisson and Germer experiment to prove wave particle duality.
- 39. Deduce the eigen function and energy eigen value for a free particle in a three dimensional box.
- 40. Explain the commutation relations between parity and symmetric Hamiltonian operators.
- 41. Derive Lorentz transformation equations and explain its consequence.
- 42. Deduce the expression for Mass- energy equivalence and explain what is unified mass unit.
