STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2015-16)
SUBJECT CODE : 15MT/MC/VL65

B. Sc. DEGREE EXAMINATION, APRIL 2018
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ VECTOR SPACES AND LINEAR TRANSFORMATIONS
TIME	$: 3$ HOURS
MAX. MARKS : 100	

SECTION - A
ANSWER ALL QUESTIONS.
(10X2=20)

1. If V is a vector space over F then prove that $0 v=0$ for $v \in V$.
2. Define subspace of a vector space.
3. Prove that the vectors $(1,2,1),(2,1,0)$ and $(1,-1,2)$ are linearly independent.
4. Prove that $F^{(n)}$ is isomorphic $F^{(n)}$ if and only if $n=m$.
5. If $\operatorname{dim}_{F} V=m$ then prove that $\operatorname{dim}_{F} \operatorname{Hom}(V, V)=m^{2}$.
6. Define inner product space.
7. Prove that $\|\propto u\|=|\propto|\|u\|$.
8. Define invertible.
9. If $T \in A(V)$ and if $\operatorname{dim}_{F} V=n$ then prove that T can have at most n distinct characteristic roots in F.
10. Find the eigen values of the matrix $A=\left[\begin{array}{ll}5 & -3 \\ 3 & -1\end{array}\right]$.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

11. If V is the internal direct sum of $U_{1}, U_{s}, \ldots, U_{n}$ then prove that V is isomorphic to the external direct sum of $U_{1}, U_{s}, \ldots, U_{n}$.
12. Prove that $L(S)$ is a subspace of V.
13. If V is finite dimensional over F then prove that any two bases of V have the same number of elements.
14. Let W be a subspace of V. Define W^{\perp} and also prove that W^{\perp} is a subspace of V.
15. State and prove Schwarz inequality.
16. Prove that the element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in $V, v T=\lambda v$.
17. Let $T: U \rightarrow V$ be a linear transformation. T is defined relative to bases $B=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ of U and V as follows.

$$
\begin{aligned}
& T\left(u_{1}\right)=2 v_{1}-v_{2} \\
& T\left(u_{2}\right)=3 v_{1}+2 v_{2} \\
& T\left(u_{3}\right)=v_{1}-4 v_{2}
\end{aligned}
$$

Find the matrix representation of T with respect to these bases and use this matrix to determine the image of the vector $u=3 u_{1}+2 u_{2}-u_{3}$.

SECTION -C

ANSWER ANY TWO QUESTIONS.

18. (a) If F is a field of real numbers then show that the set of real - valued continuous functions on the closed interval $[0,1]$ forms a vector space over F.
(b) If V is finite dimensional and if W is a subspace of V then prove that W is finite dimensional, $\operatorname{dim} W \leq \operatorname{dim} V$ and $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
19. Prove that a finite-dimensional inner product space has an orthonormal set as a basis.
20. (a) If V is of finite dimensional over F then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
(b) (i) Show that the following matrix A is diagonalizable.
(ii) Find a diagonal matrix D that is similar to A.
(iii) Determine the similarity transformation that diagonalizes A.

$$
A=\left[\begin{array}{cc}
-4 & -6 \\
3 & 5
\end{array}\right]
$$

