STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16)

SUBJECT CODE: 15MT/MC/VL65

B. Sc. DEGREE EXAMINATION, APRIL 2018 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS.

(10X2=20)

- 1. If V is a vector space over F then prove that 0v = 0 for $v \in V$.
- 2. Define subspace of a vector space.
- 3. Prove that the vectors (1, 2, 1), (2, 1, 0) and (1, -1, 2) are linearly independent.
- 4. Prove that $F^{(n)}$ is isomorphic $F^{(n)}$ if and only if n = m.
- 5. If $dim_F V = m$ then prove that $dim_F Hom(V, V) = m^2$.
- 6. Define inner product space.
- 7. Prove that $\| \propto u \| = | \propto | \| u \|$.
- 8. Define invertible.
- 9. If $T \in A(V)$ and if $dim_F V = n$ then prove that T can have at most n distinct characteristic roots in F.
- 10. Find the eigen values of the matrix $A = \begin{bmatrix} 5 & -3 \\ 3 & -1 \end{bmatrix}$

SECTION -B

ANSWER ANY FIVE QUESTIONS.

(5X8=40)

- 11. If V is the internal direct sum of U_1 , U_S , ..., U_n then prove that V is isomorphic to the external direct sum of U_1 , U_S , ..., U_n .
- 12. Prove that L(S) is a subspace of V.
- 13. If *V* is finite dimensional over *F* then prove that any two bases of *V* have the same number of elements.
- 14. Let W be a subspace of V. Define W^{\perp} and also prove that W^{\perp} is a subspace of V.
- 15. State and prove Schwarz inequality.
- 16. Prove that the element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in V, $vT = \lambda v$.

17. Let $T: U \to V$ be a linear transformation. T is defined relative to bases $B = \{u_1, u_2, u_3\}$ and $B' = \{v_1, v_2\}$ of U and V as follows.

$$T(u_1) = 2v_1 - v_2$$

$$T(u_2) = 3v_1 + 2v_2$$

$$T(u_3) = v_1 - 4v_2$$

Find the matrix representation of T with respect to these bases and use this matrix to determine the image of the vector $u = 3u_1 + 2u_2 - u_3$.

SECTION -C

ANSWER ANY TWO QUESTIONS.

(2X20=40)

- 18. (a) If F is a field of real numbers then show that the set of real valued continuous functions on the closed interval [0,1] forms a vector space over F.
 - (b) If V is finite dimensional and if W is a subspace of V then prove that W is finite dimensional, $\dim W \leq \dim V$ and $\dim \frac{V}{W} = \dim V \dim W$.
- 19. Prove that a finite-dimensional inner product space has an orthonormal set as a basis.
- 20. (a) If V is of finite dimensional over F then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
 - (b) (i) Show that the following matrix A is diagonalizable.
 - (ii) Find a diagonal matrix D that is similar to A.
 - (iii) Determine the similarity transformation that diagonalizes A.

$$A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$$