STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE: 15MT/MC/SF45

B. Sc. DEGREE EXAMINATION, APRIL 2018 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : MAJOR CORE

PAPER : SEQUENCE, SERIES AND FOURIER SERIES

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20)$

- 1. Define composition of functions.
- 2. Define cantor set.
- 3. Define a convergent sequence.
- 4. Give an example of an oscillating sequence.
- 5. Define a cauchy sequence.
- 6. Give an example of an alternating series.
- 7. Does the series $\sum_{n=1}^{\infty} \frac{2n}{n^2 4n + 7}$ diverge?
- 8. State Ratio test.
- 9. Write the Fourier series.
- 10. Write the expression for a_n .

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

- 11. If $f: A \to B$ and if $X \subset B$, $Y \subset B$, then prove that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- 12. If *A* is any non empty subset of *R* that is bounded below, then show that *A* has a greatest lower bound in *R*.
- 13. Prove that if $\lim_{n\to\infty} s_n = L$ and $\lim_{n\to\infty} s_n = M$ then L = M.
- 14. If $\{s_n\}_{n=1}^{\infty}$ is a sequence of real numbers which converges to L, then show that $\{s_n^2\}_{n=1}^{\infty}$ converges to L^2 .
- 15. Prove that $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.
- 16. State and prove Abel's lemma.
- 17. Find a *sine* series for f(x) = c in the range 0 to π .

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 18. a) If A_1, A_2, \dots , are countable sets, then prove that $\sum_{n=1}^{\infty} A_n$ is countable.
 - b) If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then show that $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 19. a) Prove that any bounded sequence of real numbers has a convergent subsequence.
 - b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.
- 20. a) State and prove Dirichlet's test.
 - b) Express $f(x) = \frac{1}{2}(\pi x)$ as a Fourier series with period 2π , to be valid in the interval to 0 to 2π .

