STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2015-16 \& thereafter)

SUBJECT CODE : 15MT/MC/SF45

B. Sc. DEGREE EXAMINATION, APRIL 2018
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : SEQUENCE, SERIES AND FOURIER SERIES TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

$(10 \times 2=20)$

1. Define composition of functions.
2. Define cantor set.
3. Define a convergent sequence.
4. Give an example of an oscillating sequence.
5. Define a cauchy sequence.
6. Give an example of an alternating series.
7. Does the series $\sum_{n=1}^{\infty} \frac{2 n}{n^{2}-4 n+7}$ diverge?
8. State Ratio test.
9. Write the Fourier series.
10. Write the expression for a_{n}.

SECTION - B

ANSWER ANY FIVE QUESTIONS:
11. If $f: A \rightarrow B$ and if $X \subset B, Y \subset B$, then prove that $f^{-1}(X \cup Y)=f^{-1}(X) \cup f^{-1}(Y)$.
12. If A is any non empty subset of R that is bounded below, then show that A has a greatest lower bound in R.
13. Prove that if $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} s_{n}=M$ then $L=M$.
14. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers which converges to L, then show that $\left\{s_{n}^{2}\right\}_{n=1}^{\infty}$ converges to L^{2}.
15. Prove that $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)$ is divergent.
16. State and prove Abel's lemma.
17. Find a sine series for $f(x)=c$ in the range 0 to π.

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. a) If $A_{1}, A_{2}, \ldots \ldots$, are countable sets, then prove that $\bigvee_{n=1}^{\infty} A_{n}$ is countable.
b) If the sequence of real numbers $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent, then show that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
19. a) Prove that any bounded sequence of real numbers has a convergent subsequence.
b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
20. a) State and prove Dirichlet's test.
b) Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π, to be valid in the interval to 0 to 2π.
