# STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 

(For candidates admitted from the academic year 2015-16)
SUBJECT CODE : 15MT/MC/CA65

## B. Sc. DEGREE EXAMINATION, APRIL 2018 <br> BRANCH I - MATHEMATICS <br> SIXTH SEMESTER

## COURSE : MAJOR CORE <br> PAPER : PRINCIPLES OF COMPLEX ANALYSIS <br> TIME : 3 HOURS

MAX. MARKS : 100

## SECTION-A

## ANSWER ALL QUESTIONS:

$10 \times 2=20$

1. Show that the function $f(z)=\operatorname{Re} z$ is nowhere differentiable.
2. Show that the $u=\log \sqrt{x^{2}+y^{2}}$ is harmonic.
3. Is the mapping $w=\frac{1}{z}$ conformal?
4. Under the transformation $w=i z+i$ show that the half plane $x>0$ maps onto the half plane $v>1$.
5. Find the bilinear transformation which maps the points $z_{1}=0, z_{2}=-i$ and $z_{3}=-1$ into $w_{1}=i, w_{2}=1$ and $w_{3}=0$ respectively.
6. Find the Taylor's series expansion of $f(z)=\frac{1}{z}$ about $z=1$.
7. Evaluate $\int_{C} \frac{d z}{z-3}$ where $C$ is the circle $|z-2|=5$.
8. State Maximum modulus Theorem.
9. Show that for $f(z)=\frac{\sin z}{z}, z=0$ is a removable singularity.
10. Calculate the residue of $\frac{z+1}{z^{2}-2 z}$ at its pole $z=2$.

## SECTION-B

## ANSWER ANY FIVE QUESTIONS:

11. Let $f(z)=\left\{\begin{array}{cl}\frac{x y}{x^{2}+y^{2}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{array}\right.$ Show that the function satisfies C-R Equations at $z=0$, but not differentiable at that point.
12. Given $v(x, y)=x^{4}-6 x^{2} y^{2}+y^{4}$. Find $f(z)=u(x, y)+i v(x, y)$ such that $f(z)$ is analytic.
13. Find the image of the strip $2<x<3$ under $w=\frac{1}{z}$.
14. Define Flux and show that the temperature function satisfies Laplace equation at each interior point of the solid.
15. Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in Laurent's series valid for
(a) $1<|z|<2$
(b) $|z-1|>1$.
16. State and prove Liouville's theorem and hence prove fundamental theorem on algebra.
17. State Cauchy's Residue theorem and Evaluate $\int_{C} \frac{2+3 \sin \pi z}{z(z-1)^{2}} d z$ where $C$ is the square having the vertices $3+3 i, 3-3 i,-3+3 i,-3-3 i$.

## SECTION-C

## ANSWER ANY TWO QUESTIONS:

18. (i) Derive the C-R equations of a function $f(z)$ in polar coordinates and find its derivative.
(ii) Find the image of the lines $x=c$ and $y=c, c \neq 0$ under the transformation $w=z^{2}$ and hence find the image of the $x$-axis and the $y$-axis. $\quad(10+10)$
19. (i) Determine the bilinear transformation which maps $0,1, \infty$ to $i,-1,-i$ respectively. Show also that under this transformation the interior of the unit circle of the $z$-plane maps onto the left half of the $w$-plane.
(ii) State and prove the Taylor's theorem.
20. (i) Evaluate: (a) $\int_{C} \frac{z d z}{z^{2}-1}$ where $C$ is the positively oriented circle $|z|=2$
(b) $\int_{C} \frac{z^{3} d z}{(2 z+i)^{3}}$ where $C$ is the unit circle.
(ii) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$

## bacacacala

