STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted from the academic year 2015-16 \& thereafter)

SUBJECT CODE : 15MT/MC/AG25
B. Sc. DEGREE EXAMINATION, APRIL 2018
BRANCH I - MATHEMATICS
SECOND SEMESTER

COURSE : MAJOR CORE
PAPER : ANALYTICAL GEOMETRY
TIME

SECTION A

Answer All Questions:

$10 \times 2=20$

1. Determine the nature of the following conic:
$17 x^{2}-12 x y+8 y^{2}+46 x-28 y+17=0$
2. What is the equation of axis of a conic with the length $2 r_{1}$ and $2 r_{2}$?
3. Define conjugate diameter.
4. Prove that $C P^{2}-C D^{2}=a^{2}-b^{2}$, whenever a pair of diameters and its conjugate meets the hyperbola.
5. Find the distance of the origin from the plane $6 x-3 y+2 z-14=0$.
6. Find the distance between the parallel planes :

$$
2 x-2 y-z+3=0 \text { and } 4 x-4 y+2 z+5=0 .
$$

7. Find the equation of line joining the points $(2,1,3)$ and $(1,-2,4)$.
8. What is the condition for the lines to be coplanar?
9. Find the equation of the sphere with centre $(-1,2,-3)$ and radius 3 .
10. Define a right circular cone.

SECTION B

Answer Any Five Questions:

11. Find the centre, lengths and equations of the axes of the conic

$$
5 x^{2}-6 x y+5 y^{2}+22 x-26 y+29=0 .
$$

12. Prove that the tangents at the ends of a pair of conjugate diameters of an ellipse form a parallelogram of constant area.
13. Show that $P R=Q S$ if a straight line cuts a hyperbola in P and Q and its asymptotes in R and S.
14. A variable plane passes through a fixed point (a, b, c) and meets the coordinate axes in A, B, C. Show that the locus of a point common to the plane through A, B, C parallel to the coordinate plane is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$.
15. Find the equation of the plane which passes through the point $(-1,3,2)$ and perpendicular to the two planes $+2 y+2 z=5,3 x+3 y+2 z=8$.
16. Find the equation of the plane containing the parallel lines
$\frac{x-3}{1}=\frac{y-2}{-4}=\frac{z-1}{5} \quad$ and $\quad \frac{x-1}{1}=\frac{y+1}{-4}=\frac{z-2}{5}$.
17. Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$ and find the point of contact.

SECTION C

Answer Any Two Questions:

18. (i) Prove that the general second degree equation will represent a conic.
(ii) Find the equation of the plane through the point $(1,-2,3)$ and the intersection of the planes $2 x-y+4 z=7$ and $x+2 y-3 z+8=0$
19. (i) A rectangular hyperbola with centre C is cut by circle of radius r in four points P, Q, R, S. Prove that $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=4 r^{2}$.
(ii) Find the shortest distance between the lines

$$
\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} \quad \text { and } \quad \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2} .
$$

20. (i) Find the equation of the sphere through $(2,3,1),(5,-1,2),(4,3,-1),(2,5,3)$.
(ii) Find the equations of the image of the line $\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2}$ in the plane

$$
2 x-3 y+2 z+3=0
$$

