STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015 – 16 and thereafter)

SUBJECT CODE: 15CS/MC/DA24

B. C. A. DEGREE EXAMINATION, APRIL 2018 SECOND SEMESTER

COURSE PAPER TIME	: D A	AJOR CORE ATA STRUCTURES A HOURS	ND ALGORITHMS	MAX. MARKS: 100	
		SECTION	ON A		
	ALL QUES' best answer	ΓΙΟΝS:	O1112	$(20 \times 1 = 20)$	
1. Binary se	earch algorith	m can not be applied to	·		
	rted linked li		b. sorted binary tree	es	
C. SO	rted linear ar	ray	d. pointer array		
2. Which of	the following	g is not the required cond	lition for binary search	algorithm?	
a. Th	ne list must be	e sorted			
b. Th	nere should b	e direct access to the mid	ldle element in any sub	olist	
c. Th	ere must be	mechanism to delete and	or insert elements in l	ist	
	one of above				
3. The situat	ion in a linke	ed list START=NULL is			
	derflow		c. housefull	d. saturated	
		g is two way list?			
C			b. circular header li		
		header and trailer nodes		ioned	
5. The term	"push" and "	pop" is related to the	·•		
a. arı	•	b. list	c. stack	d. all of the mentioned	
		g name does not relate to			
			c. Piles		
	aversing a tre	e resulted E A C K F H	D B G; the preorder tra	aversal would	
return				1 77 1 77 677 6	
		b. FAEKCDHGB		d. FEAKDCHBG	
		g is false about a binary s			
		s always lesser than its pa			
	_	is always greater than its	-		
	_	ht sub-trees should also	•		
		entioned			
	the followin				
		ontain no edges and many			
		ontain many edges and no			
		ontain no edges and no v	eruces		
	one of the me		ia Irnovym as a		
		ices having equal degree		d Complete Cucal	
a. M	ulti Graph	b. Regular Graph	c. Simple Graph	d. Complete Graph	

Fill in the blanks:

11. Two main measures for the efficiency of an algorithm are &	
12. The complexity of Binary search algorithm is	
13. The complexity of Bubble sort algorithm is	
14. The complexity of merge sort algorithm is	
15. Finding the location of the element with a given value is:	
16. The order of the queue is	
17 is an example of linear data structure.	
18. The operation of processing each element in the list is known as	
19 is non linear data structure.20. Graph is called, if every edge is associated with a real number.	
20. Graph is caned, if every edge is associated with a real number.	
SECTION B	
ANSWER ALL THE QUESTIONS: $(5 \times 2 =$	10)
21. Define Algorithm.	
22. Write short notes on sorting.	
23. Define Stack.	
24. What is leaf?	
25. What is graph?	
SECTION C	
ANSWER ANY EIGHT OF THE FOLLOWING QUESTIONS: (8 X 5 =	40)
ANSWER ANY EIGHT OF THE FOLLOWING QUESTIONS: (8 X 5 =	40)
26. Explain about the Linear Search.	40)
26. Explain about the Linear Search.27. Explain the algorithm for Exchanging of two variables.	40)
26. Explain about the Linear Search.27. Explain the algorithm for Exchanging of two variables.28. Explain about the Insertion Sort.	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 	40)
 26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 35. Explain about the different types of graph with neat diagram. 	
26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 35. Explain about the different types of graph with neat diagram. SECTION D ANSWER ANY THREE OF THE FOLLOWING QUESTIONS: (3 X 10 =	
26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 35. Explain about the different types of graph with neat diagram. SECTION D ANSWER ANY THREE OF THE FOLLOWING QUESTIONS: (3 X 10 = 36. Discuss about the Binary Search.	
26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 35. Explain about the different types of graph with neat diagram. SECTION D ANSWER ANY THREE OF THE FOLLOWING QUESTIONS: (3 X 10 = 36. Discuss about the Binary Search. 37. Describe in detail about the Two way circular list.	
26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 35. Explain about the different types of graph with neat diagram. SECTION D ANSWER ANY THREE OF THE FOLLOWING QUESTIONS: (3 X 10 = 36. Discuss about the Binary Search. 37. Describe in detail about the Two way circular list. 38. Explain about the infix to postfix conversion with example.	
26. Explain about the Linear Search. 27. Explain the algorithm for Exchanging of two variables. 28. Explain about the Insertion Sort. 30. Explain the Fibonacci series using recursion. 31. Explain the different operations of stack. 32. Discuss about the Binay Tree and its terminology. 33. Describe in detail about the Heap Sort. 34. Explain about the Dijikstra's algorithm. 35. Explain about the different types of graph with neat diagram. SECTION D ANSWER ANY THREE OF THE FOLLOWING QUESTIONS: (3 X 10 = 36. Discuss about the Binary Search. 37. Describe in detail about the Two way circular list.	
