STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE: 15CH/MC/OC24

B.Sc. DEGREE EXAMINATION, APRIL 2018 BRANCH IV - CHEMISTRY SECOND SEMESTER

COURSE : MAJOR – CORE

PAPER : ORGANIC CHEMISTRY - I

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS.

(30x1=30)

I	Choose	the	correct	answer.
---	--------	-----	---------	---------

1.	Geometrical isomerisa	m is exhibited by a co	mpound when there is	a		
	a) free rotation about	C-C bond	b) triple bond			
	c) restricted rotation about C-C bond		d) Bridgehead carbon			
2.	The Meso form of Ta	rtaric acid is optically				
	a) No chiral centre		b) Internal compensation			
	c) External compensation		d) All of the above.			
3.	Retention of configur					
	a) $S_N 2$	b) S _N 1	c) S _N i	d) All of the above		
4.	The –Cl group directs the incoming group to					
	a) Ortho/Para	b) Meta	c) Ipso	d) None of the above		
5.	Satyzeff product is					
	a) Less substituted alkenec) more substituted alkene		b) disubstituted alkene			
			d) cycloalkane.			
6. Ozonolysis of cyclohexene yields the following compound						
	a) 1,3-dicarbonyl		b) 1,4-dicarbonyl			
	c) 1,5-dicarbonyl		d) 1,6-dicarbonyl			
7.	In Cannizaro reaction the products obtained are					
	a) α- & β-hydroxy ket	tones	b) acid and alcohol			
	c) acid and phenol		d) aldehyde and ketone			
8.	The intermediate form	ned during Reimer-Tie	emann reaction is			
	a) Nitrene	b) Carbene	c) Ketene	d) Alkene		
9.	During reduction, hyd	lride transfer takes pla	ce for the following re-	agent		
	a) NH ₂ NH ₂ /KOH	b) Zn-Hg/HCl	c) LiAlH ₄	d) All of the above		
10.	When a cyclic ketone	undergoes Baeyer-Vi	lliger oxidation the pro	duct obtained is		
	a) Lactam	b) Lactone	c) Lactate	d) None of the above		

II Fill in the blanks:

11. A co	nformation with a	dihedral (torsional) angle is known as
stagg	gered conformation.	-
12. R/S 1	notation was given by the scient	ists
13. Benz	yne gives Diels-Alder adduct w	ith
14. The	reactivity of Aniline towards ele	ectrophilic substitution can be reduced by
conv	erting–NH ₂ group to	group.
		mechanism where departure of
β - h	ydrogen and leaving group takes	s place simultaneously.
16. Pero	xide effect during addition of all	kene is also known as
17. Crote	onaldehyde is obtained when acc	etaldehyde undergoes reaction
18. In	reaction α-haloester	reacts with ketone in the presence of Zn/H ₂ O to
give	β-hydroxy ester.	-
19. Bron	noform can be prepared by the a	ection of Br ₂ /HO ⁻ on
20. The	reaction which employs acidic c	ondition for the reduction of carbonyl group is
knov	vn as .	, ,

III State whether true or false:

- 21. Dextro isomers rotate plane polarized light to left in a polarimeter.
- 22. Furning nitric acid is $H_2S_2O_7$.
- 23. KMnO₄ gives anti product during hydroxylation.
- 24. Acetone exhibits less nucleophilicity than acetaldehyde.
- 25. In Oppenaur oxidation an alcohol is converted to a ketone.

IV Answer in a line or two:

- 26. Define the term conformation.
- 27. How the acylium ion is stabilized by resonance?
- 28. Give two reagents for carrying out epoxidation.
- 29. What are active methylene compounds?
- 30. What is Benzoin condensation?

Section - B

Answer any five questions.

 $(5 \times 6 = 30)$

- 31. What are diastereomers? Explain with an example?
- 32. Convert the given Fischer to Newmann & Newmann to Fischer projection through Sawhorse.

33. Why Friedel-Crafts acylation is synthetically useful than Friedel-Crafts alkylation?

..3

- 34. Explain E_{1C}B mechanism with suitable example.
- 35. Predict the products of the following conversion and comment about the stability of the products formed with energy profile diagram.

- 36. What is aldol? Illustrate its preparation with suitable example.
- 37. Explain with mechanism the crossed Cannizzaro reaction.

Section - C

Answer any two questions.

 $(2 \times 20 = 40)$

38. i) Write E/Z, R/S notations for the following compounds

(10+10)

- ii) Compare stereoselective and stereospecific reactions with suitable examples.
- 39. a) Benzyne mechanism is also called as elimination-addition mechanism. Why? Give evidences in favour of this mechanism.
 - b) Explain the following reactions with suitable examples.
 - i) Houben-Hoesch reaction ii) Reformatsky reaction

(10+10)

40. a) Compare S_N1 and S_N2 reactions.

(5+5+10)

b) Complete and propose a suitable mechanism for the following reaction

c) Explain with examples both Markownikoff and anti-Markownikoff products formed during addition reactions of alkene.

