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Climate Policy and Innovation: A Quantitative 
Macroeconomic Analysis†

By Stephie Fried*

A carbon tax can induce innovation in green technologies. I eval-
uate the quantitative impact of this channel in a dynamic, general 
equilibrium model with endogenous innovation in fossil, green, and 
nonenergy inputs. I discipline the parameters using evidence from 
historical oil shocks, after which both energy prices and energy 
innovation increased substantially. I find that a carbon tax induces 
large changes in innovation. This innovation response increases 
the effectiveness of the policy at reducing emissions, resulting in a 
19.2 percent decrease in the size of the carbon tax required to reduce 
emissions by 30 percent in 20 years. (JEL H23, O31, Q41, Q48, Q54, 
Q55, Q58)

A carbon tax can induce innovation in green technologies. Over time, these tech-
nological advances lower the cost of reducing carbon emissions. However, 

the magnitudes of the response of innovation and of the accompanying effects on 
energy prices, production, and carbon emissions remain open questions. This paper 
develops a general equilibrium model of endogenous innovation and energy, which I 
use to quantify the dynamic effects of a carbon tax. I find that the carbon tax induces 
large movements in innovation that have considerable effects on energy-related 
aggregates. Moreover, abstracting from endogenous innovation—and modeling 
technological progress as exogenous—results in a substantial overestimation of the 
size of the carbon tax necessary to attain a given reduction in emissions. A quan-
titative understanding of the consequences of endogenous innovation is important, 
since government agencies often evaluate climate mitigation projects based partly 
on climate-economy models that abstract from endogenous innovation.1

The central contribution of this paper is to quantify the interaction between 
endogenous innovation and climate policy in a dynamic, general equilibrium frame-
work that explicitly models innovation in fossil energy, green energy, and nonenergy 

1 For example, the social cost of carbon that the Environmental Protection Agency (EPA) uses to evaluate cli-
mate policies is, in part, based on climate-economy models that do not incorporate endogenous innovation. 
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sectors. The model builds on the macroeconomic literature on directed technical 
change and climate.2 This earlier work is mainly theoretical, and the models are 
generally not designed for quantitative analysis.3 For example, in many of the exist-
ing models, such as Acemoglu et al. (2012—henceforth, AABH), innovation occurs 
in only one energy sector (i.e., fossil or green) on the long-run balanced growth 
path. However, US data on fossil and green innovation show positive and substan-
tial amounts of innovation in both of these sectors since the 1970s. To match this 
empirical fact, I incorporate technology spillovers across the different sectors. The 
spillovers imply that technology developed for one sector increases the productiv-
ity of innovation in the other sectors. One example of these spillovers between the 
fossil and green energy sectors is that the first mass commercialization of solar cells 
was driven by demand from oil companies to power the lights on their offshore rigs 
(Perlin 2000). If spillovers such as these are sufficiently strong, then the balanced 
growth path is an interior solution in which innovation occurs in both the fossil and 
green energy sectors.4

I develop a novel calibration strategy using the energy price increases triggered 
by oil shocks and the accompanying changes in energy production and innovation. 
It is important for the model to capture the empirical relationships among energy 
prices, production, and innovation. These are key links because many climate poli-
cies, including a carbon tax and a cap-and-trade system, create incentives to reduce 
fossil energy consumption through changes in energy prices. The oil shocks provide 
empirical evidence of the response of energy innovation and production to an aggre-
gate increase in the energy price. This variation is particularly useful for disciplining 
the parameter values since economy-wide historical examples of climate policies 
are scarce. Thus, the calibration strategy is in itself one of the contributions of this 
paper.

I perform two exercises to fully explore the interactions between endogenous 
innovation and climate policy. First, to evaluate the dynamic effects of climate pol-
icy with endogenous innovation, I introduce a constant carbon tax into my bench-
mark model with endogenous innovation. Second, to quantify the importance of 
endogenous innovation for climate policy evaluation, I introduce a constant carbon 
tax into an alternative model with the endogenous innovation channel shut down. I 
refer to this model as the exogenous-innovation model because innovation cannot 
respond to the tax. In both models, I choose the size of the carbon tax to achieve a 
30 percent reduction in emissions in 20 years, similar to early versions of the US 
emissions targets discussed in the context of the Clean Power Plan.5

2 See, for example, Smulders and de Nooij (2003); Acemoglu et. al (2012); Hart (2012); Hassler, Krusell, and 
Olovsson (2012); Hémous (2016); Acemoglu et al. (2016). For an overview, see Fischer and Heutel (2013). 

3 For example, AABH state that their “objective is not to provide a comprehensive quantitative evaluation” 
(AABH, 154). One exception is Acemoglu et al. (2016), which is a quantitative paper focused on the relative roles 
of carbon taxes and subsidies to green energy research in the structure of optimal climate policy. A second excep-
tion is Hassler, Krusell, and Olovsson (2012), which uses US time series data to estimate an aggregate production 
function including capital, labor, fossil energy, and energy saving technical change. 

4 Acemoglu (2002) and Hart (2012) show that the strength of cross-sector technology spillovers can determine 
stability of an interior long-run balanced growth path in models of directed technical change. 

5 The primary focus of this paper is on quantifying the dynamic relationship between a carbon tax and fossil, 
green, and nonenergy innovation. I choose to quantify these mechanisms for a realistic climate policy and not for 
the optimal policy. I choose this route both because it is more realistic in the current environment and also because 
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There are two main findings. First, comparing the endogenous-innovation model 
with and without the tax, I find that the tax induces considerable movements in 
innovation, energy prices, and other macroeconomic aggregates. For example, after 
20 years, the tax causes green innovation to be 50 percent higher and fossil innova-
tion to be 60 percent lower than what they would have been without the tax. These 
movements in innovation are accompanied by substantial changes in relative prices. 
In the model with the tax, the relative price of green compared to fossil energy is 
7 percent lower in 20 years and 17 percent lower on the new balanced growth path 
than in the model without the tax.

Second, comparing the results from the tax in the exogenous- and endogenous- 
innovation models, I find that endogenous innovation has substantial implications 
for the effectiveness of the carbon tax and for the relative price of green energy. 
The carbon taxes required to achieve the emissions target in the exogenous- and 
endogenous-innovation models are 30.3 and 24.5 in 2013 dollars per ton of CO2, 
respectively. Endogenous innovation reduces the carbon tax by 19.2 percent because 
it increases incentives for carbon abatement. The intuition for this result is that 
regardless of whether innovation is endogenous, the carbon tax operates through 
prices to shift demand from fossil to green energy, reducing emissions. However, 
when innovation is endogenous, this shift in demand spurs green innovation. Over 
time, the increase in green innovation reduces the marginal cost of producing green 
energy, lowering its equilibrium price and creating stronger incentives for agents to 
switch from fossil to green. Thus, endogenous innovation amplifies the price incen-
tives created by the carbon tax, implying that the emissions target can be achieved 
with a 19.2 percent smaller tax.

Additionally, I find that endogenous innovation has offsetting effects on the gross 
welfare costs of attaining a given emissions target.6 The carbon tax is smaller when 
innovation is endogenous, and, hence, the accompanying gross distortionary cost is 
smaller. However, the shift in innovation from fossil to green energy in response to 
the tax reduces the aggregate growth rate along the transition path to a new long-run 
equilibrium, raising the gross welfare cost of the policy. As a result, the overall effect 
of endogenous innovation on the gross welfare costs of the carbon tax is small. In par-
ticular, the consumption equivalent variation (CEV) of the tax is −0.3 percent in the 
endogenous-innovation model and −0.4 percent in the exogenous-innovation model.

In addition to the literature on directed technical change and climate, this paper 
builds on an environmental literature on the effects of endogenous innovation in 
integrated assessment climate-economy models.7 Unlike much of this previous envi-
ronmental literature, the present paper specifically models the general equilibrium 

calculating optimal policy requires additional assumptions, which can make the underlying mechanisms governing 
the relationship between endogenous innovation and climate policy less transparent. For example, a rigorous cal-
culation of the optimal policy requires a damage function, a realistic depiction of the carbon cycle, a plausible time 
frame for the analysis, a reasonable rate of time preference, and assumptions about carbon emissions from other, 
non-modeled, countries. 

6 The carbon tax is designed to correct the externality from carbon emissions. Therefore, relative to the social 
optimum, the carbon tax should not generate first-order distortionary or welfare costs. Here, I use the term “gross” 
to denote changes relative to the baseline outcome, which does not include the damage from climate change. 

7 See, for example, Grubb, Duong, and Chapuis (1994); Goulder and Schneider (1999); Nordhaus (2002); van 
der Zwaan et al. (2002); Popp (2004); Gerlagh (2008); and Popp, Newell, and Jaffe (2009), which provides a nice 
overview. 
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effects from endogenous innovation in each of two energy sectors (fossil and green) 
and in a third sector comprising the rest of the economy. These features influence the 
effects of endogenous innovation on climate policy outcomes along three important 
dimensions. First, the potential for innovation in fossil, green, and nonenergy sec-
tors is important for obtaining a plausible calibration that applies to the whole econ-
omy. Second, the general equilibrium, three-sector framework fully endogenizes 
the relative price of green to fossil energy. And third, the three sectors imply that 
increased green innovation can crowd out fossil innovation and/or nonenergy inno-
vation. Additionally, this paper also relates to the growing macroeconomic literature 
on energy and climate with exogenous innovation.8

The paper proceeds as follows. Sections I and II describe the model. Section III 
discusses the oil shocks and the calibration strategy. Section IV presents the main 
results, sensitivity analysis, and comparison with earlier work. Section V concludes.

I.  Model

I adapt the standard directed technical change framework (Acemoglu 2002) to a 
setting with fossil, green, and nonenergy intermediate inputs and oil shocks. Fossil 
energy refers to energy derived from coal, oil, or natural gas. Green energy refers to 
energy derived from any non-carbon energy source. This category includes renew-
able energy, such as wind and solar, as well as nuclear energy and energy savings 
from improved fossil energy efficiency, such as better insulation, higher fuel econ-
omy, etc.

A. Final Good

The unique final consumption good, ​Y​ , is produced competitively from energy, ​E​ , 
and nonenergy inputs, ​N​ , according to the CES production function

(1)	​ ​Y​t​​  = ​​ (​δ​y​​ ​E​ t​ 
​ 
​ε​y​​−1
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where ​​ε​y​​  <  1​ is the elasticity of substitution between the energy and nonenergy 
inputs. Energy is a nested CES composite of fossil energy, green energy, and oil 
imports,

(2)	​​ E​t​​  = ​​ (​​F ̃ ​​ t​ 
 ​ 
​ε​e​​−1

 _____ ​ε​e​​ ​
​ + ​G​ t​ 

​ 
​ε​e​​−1

 _____ ​ε​e​​ ​
​)​​​ 

​ 
​ε​e​​
 _____ 

​ε​e​​−1
 ​

​​,

where

	​​​ F ̃ ​​t​​  = ​​ (​δ​​F ̃ ​​​ ​F​ t​ 
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​ε​f  ​​−1

 _____ ​ε​f​​ ​
​ + (1 − ​δ​​F ̃ ​​​)(​O​ t​ 

∗​​)​​ ​ 
​ε​f  ​​−1

 _____ ​ε​f​​ ​ ​)​​​ 

​ 
​ε​f​​
 _____ 

​ε​f  ​​−1
 ​

​​.

8 See, for example, Nordhaus (2008), Krusell and Smith (2009), Hassler and Krusell (2012), and Golosov et al. 
(2014). 
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Parameter ​1  < ​ ε​f​​  <  ∞​ denotes the elasticity of substitution between fossil energy 
(produced domestically), ​F​ , and oil imports, ​​O​​ ∗​​. Since fossil energy is a mixture of 
coal, oil, and natural gas, oil imports and fossil energy are not perfect substitutes. 
Parameter ​​ε​e​​  >  1​ is the elasticity of substitution between green energy, ​G​ , and the 
CES composite comprised of fossil energy and oil imports, ​​F ̃ ​​.9 The final good is the 
numeraire.

B. Fossil, Green, and Nonenergy Intermediate Inputs

Fossil, green, and nonenergy intermediate inputs are produced competitively and 
sold at market prices to the final good producer.10 The production functions for each 
intermediate ​j ∈ {  f, g, n}​ are constant returns to scale in labor, ​​L​j​​​ , and a unit mass 
of sector-specific machines, each indexed by ​i​ , ​​X​ji​​​ ,

(3)	​​ F​ t​​  = ​ L​ ft​ 
1−​α​f​​​ ​∫ 

0
​ 
1
​​ ​X​ fit​ 

​α​f​​​ ​A​ fit​ 
1−​α​f​​​ di, ​ G​t​​  = ​ L​ gt​ 

1−​α​g​​​ ​∫ 
0
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Variable ​​A​ji​​​ denotes the technology embodied in machine ​​X​ji​​​ , and ​​α​j​​​ is the factor 
share of machines in sector ​j​. A representative intermediate-goods producer chooses 
machines and labor to maximize profits, taking prices as given. Labor market clear-
ing requires that ​​L​ ft​​ + ​L​gt​​ + ​L​ nt​​  ≤  L​ , where ​L​ is the fixed exogenous supply of 
workers in the economy.

C. Machines

There is a unit mass of machine producers in each of the three sectors. The 
machine producers sell their machines to the intermediate-goods producers in their 
specific sectors. Each machine embodies technology. A machine producer can hire 
scientists to innovate on the embodied technology. A machine costs one unit of the 
final good to produce, regardless of the sector or the level of technology embod-
ied in the machine. The market for scientists is competitive, and the machine pro-
ducer must pay the scientists he hires the market wage, ​​w​sj​​​ . However, the market for 

9 Following AABH and Hémous (2016), I do not include a distribution parameter between green energy, ​G​ , and 
the CES composite comprised of fossil energy and oil imports, ​​F ̃ ​​. Differences in the quantities of ​​F ̃ ​​ and ​G​ result 
exclusively from differences in their relative prices and not from an underlying asymmetry in the production func-
tion. Both ​​F ̃ ​​ and ​G​ contribute equally at the margin to the energy composite, ​E​ , when relative prices are the same. 
For example, a boiler that uses one less ton of coal (higher ​G​) is equivalent to additional coal (higher ​​F ̃ ​​). However, 
the finite elasticity of substitution implies that there is some heterogeneity in the production process, so agents do 
not substitute indefinitely into either ​​F ̃ ​​ or ​G​. 

10 This model of fossil energy production abstracts from resource scarcity. While the supplies of fossil energy 
are finite, historically, fossil energy prices have not followed the predictions from the standard Hotelling model of 
an exhaustible resource (Hamilton 2009). Moreover, given the presence of climate change, scarcity constraints on 
fossil energy extraction are less likely to bind. For example, the International Energy Agency estimates that if the 
world is to remain below the two degree target, then no more than one-third of the proven reserves of fossil energy 
can be consumed prior to 2050 (International Energy Agency 2012). 
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machines is monopolistically competitive, and the machine producers earn positive 
profits from the sale of their machines.

The evolution of technology for machine producer ​i​ in each sector ​j​ is

(4)	​ ​A​fit​​  = ​ A​ft−1​​​(1 + γ ​​(​ 
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where ​​S​ji​​​ denotes the number of scientists who work for machine producer ​i​ in 
sector ​j​. Scientists affect the growth rate of the machine producer’s technology. 
Hence, there is path dependence in innovation; higher existing technology in a sec-
tor increases the marginal product of research in that sector.11

Parameter ​η   ∈ (0, 1)​ implies that there are diminishing returns to scientific 
research within a given period. This modeling choice captures the “stepping on 
toes” effect discussed in the endogenous growth literature, where scientists are more 
likely to duplicate discoveries within a given period (Jones and Williams 1998). 
Parameter ​γ​ measures the efficiency with which scientists produce new ideas.

Parameters ​​ρ​f​​​ , ​​ρ​g​​​ , and ​​ρ​n​​​ adjust for differences in sector diversity. Specifically, ​​ρ​f​​​ 
is the number of processes on which a scientist can innovate in fossil energy. Fossil 
energy scientists divide their time equally among all available processes (and like-
wise for green and nonenergy scientists). Accounting for differences in sector diver-
sity is particularly important because there are diminishing returns to innovation in 
each sector. Without a diversity adjustment, the marginal product of a nonenergy 
scientist is much lower than that of an energy scientist simply because there are 
more nonenergy scientists.

Variable ​​A​j​​​ , denotes the aggregate (average) level of technology in sector ​j​:

(5)	​ ​A​ft​​  = ​ ∫ 
0
​ 
1
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0
​ 
1
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0
​ 
1
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I define aggregate technology, ​A​ , as the average of the technologies in each sector 
weighted by the number of processes:

(6)	​ ​A​t​​  = ​ 
​ρ​f​​ ​A​ft​​ + ​ρ​g​​ ​A​gt​​ + ​ρ​n​​ ​A​nt​​  _______________  ​ρ​f​​ + ​ρ​g​​ + ​ρ​n​​ ​ ​ .

The TFP catchup ratios, ​​​(​A​t−1​​/​A​jt−1​​)​​​ ϕ​​ , incorporate technology spillovers across the 
different sectors. The intuition for these cross-sector spillovers is that if sector ​j​ 

11 The main differences between the specification in equation (4) and the specification used in AABH are the 
TFP catch-up term ​​​(​A​t−1​​/​A​jt−1​​)​​​ ϕ​​ and the diminishing returns to innovation, ​η​. 
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is relatively backward, then there are many ideas from other sectors that have not 
yet been applied in sector ​j​. This “low-hanging fruit” increases the productivity of 
research in sector ​j​. Parameter ​ϕ   ∈ (0, 1)​ determines the strength of the cross-sector 
spillovers.

In addition to the cross-sector technology spillovers, the technology accumula-
tion process also incorporates technology spillovers within a sector after one period. 
The technology of machine producer ​i​ in sector ​j​ tomorrow depends on the level 
of knowledge in sector ​j​ today and on any new ideas that machine producer ​i​ accu-
mulates from hiring scientists. Hence, a given machine producer’s discoveries are 
secret for one period. After the period is over, other machine producers in his sector 
observe his discoveries and can incorporate them into their own innovation pro-
cesses. This modeling choice is empirically reasonable, provided that the period is 
sufficiently long and is in line with similar assumptions made in the literature (e.g., 
AABH; Hémous 2016). I discuss evidence of these within-sector spillovers in fossil 
and green energy and an appropriate period length in online Appendix B.

Each machine producer chooses the quantity of machines, the machine price, and 
the number of scientists, to maximize his profits. He takes the existing levels of tech-
nology as given. Scientist market clearing requires that ​​S​ft​​ + ​S​gt​​ + ​S​nt​​  ≤  S​ , where ​
S​ is the fixed exogenous supply of scientists in the economy and ​​S​j​​​ is the number of 
scientists in sector ​j​.

D. An Oil Shock and a Carbon Tax

Carbon emissions, ​​ , accumulate from the use of fossil energy and oil imports,

	​ ​​t​​  = ​ ω​f​​ ​F​t​​ + ​ω​o​​ ​O​ t​ ∗​​.

Parameters ​​ω​f​​​ and ​​ω​o​​​ convert fossil energy and oil imports into carbon emissions.
The supply of oil imports is perfectly elastic at exogenous price, ​​P​ o​ ∗​​. An oil shock 

is an exogenous increase in ​​P​ o​ ∗​​. I choose to model the price of oil imports as exog-
enous because this is a simple way to model the oil shocks, which I use for calibra-
tion. All other prices are endogenous and respond to the oil price shock through the 
model’s general equilibrium channels. In particular, the oil price shock increases 
fossil energy demand, raising the equilibrium price of domestic fossil energy, con-
sistent with the empirical observations of oil shocks and domestic fossil energy 
prices.

A carbon tax places a price on carbon emissions. Thus, the tax, ​τ​ , is a tax per unit 
of carbon consumed, which is independent of the price. The tax increases the price 
of fossil energy from ​​P​ft​​​ to ​​P​ft​​ + ​τ​f​​​ and the price of oil imports from ​​P​ ot​ ∗ ​​ to ​​P​ ot​ ∗ ​ + ​τ​o​​​ , 
where ​​τ​f​​  =  τ ×​ (carbon content of fossil energy) and ​​τ​o​​  =  τ ×​ (carbon content of 
oil imports).

E. Household

The representative household is inhabited by a unit mass of machine producers 
in each sector, ​L​ workers, and ​S​ scientists. The relative supplies of workers and 
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scientists are fixed. Additionally, I assume that both workers and scientists are 
mobile across sectors so that they can switch sectors without incurring adjustment 
costs. Zero adjustment costs are reasonable provided the time period is sufficiently 
long. Such an assumption can be further justified with a broad view of scientists and 
workers. For example, the skills of a chemist (scientist) and a construction worker 
(worker) are needed in all three sectors, suggesting that these types of scientists and 
workers would not incur substantial adjustment costs from switching sectors in the 
long run.

The utility function is ​U(​C​t​​)  = ​ C​ t​ 1−θ​/(1 − θ)​ , where variable ​C​ denotes house-
hold consumption and parameter ​1/θ​ is the intertemporal elasticity of substitution. 
There is no mechanism through which the household can save, and, thus, it con-
sumes its income.12 The budget constraint is

(7)	​ ​C​t​​  = ​ w​lft​​ ​L​ ft​​ + ​w​lgt​​ ​L​gt​​ + ​w​lnt​​ ​L​ nt​​ + ​w​sft​​ ​S​ft​​ + ​w​sgt​​ ​S​gt​​ + ​w​snt​​ ​S​nt​​

	 +​ ​​∫ 
0
​ 
1
​​​ (​​π​fit​​​ + ​​π​git​​​ + ​​π​nit​​​) di + ​​T​t​​​ .

Variable ​​π​ji​​​ denotes profits to machine producer ​i​ in sector ​j​ , and variable ​T​ denotes 
lump sum transfers from the carbon tax.

The aggregate resource constraint implies that the final good can be consumed, 
converted to machines, or used to purchase oil imports:

(8)	​ ​Y​t​​  = ​ C​t​​ + ​∫ 
0
​ 
1
​​ (​X​fit​​ + ​X​git​​ + ​X​nit​​) di + ​P​ ot​ ∗ ​ ​O​ t​ ∗​​.

F. Equilibrium

A decentralized equilibrium consists of sequences of wages (​​w​lft​​ , ​w​lgt​​ , ​w​lnt​​ , ​w​sft​​ , ​
w​sgt​​ , ​w​snt​​​), prices for machines (​​P​ fit​ x ​ , ​P​ git​ x ​ , ​P​ nit​ x ​)​ , prices for intermediates (​​P​ ft​​ , ​P​ gt​​ , ​P​ nt​​​),  
demands for machines (​​X​ fit​ d ​ , ​X​ git​ d ​ , ​X​ nit​ d ​)​ , demands for intermediates (​​F​ t​ d​ , ​G​ t​ d​ , ​N​ t​ d​​  ), 
demands for labor (​​L​ ft​ d​ , ​L​ gt​ d ​ , ​L​ nt​ d ​​), demands for scientists (​​S​ ft​ d​ , ​S​ gt​ d ​ , ​S​ nt​ d ​​), supplies of 
machines (​​X​ fit​ s ​ , ​X​ git​ s ​ , ​X​ nit​ s ​)​ , supplies of intermediates, (​​F​ t​ s​ , ​G​ t​ s​ , ​N​ t​ s​​), supplies of labor 
(​​L​ ft​ s ​ , ​L​ gt​ s ​ , ​L​ nt​ s ​​), and supplies of scientists (​​S​ ft​ s ​ , ​S​ gt​ s ​ , ​S​ nt​ s ​​) such that given a sequence of 
oil import prices (​​P​ ot​ ∗ ​​):

	 (i)	 Agents optimize: (​​P​ fit​ x ​ , ​P​ git​ x ​ , ​P​ nit​ x ​)​ , (​​S​ ft​ d​ , ​S​ gt​ d ​ , ​S​ nt​ d ​​), and (​​X​ fit​ s ​ , ​X​ git​ s ​ , ​X​ nit​ s ​)​ maximize 
the machine producers’ profits; (​​X​ fit​ d ​ , ​X​ git​ d ​ , ​X​ nit​ d ​​) and ​(​L​ ft​ d​ , ​L​ gt​ d ​ , ​L​ nt​ d ​​) maximize 
the intermediate-goods producers’ profits; (​​F​ t​ d​ , ​G​ t​ d​ , ​N​ t​ d​ , ​(​O​ t​ ∗​)​​ d​​  ) maximize the 
final-good producer’s profits; (​​L​ ft​ s ​​ , ​​L​ gt​ s ​​ , ​​L​ nt​ s ​​) and (​​S​ ft​ s ​​ , ​​S​ gt​ s ​​ , ​​S​ nt​ s ​​) maximize the 
household’s utility.

12 This is a standard simplification in the directed technical literature (e.g., Acemoglu 2002; AABH), which 
considerably simplifies the solution. 
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	 (ii)	 Markets clear: (​​P​ fit​ x ​​ , ​​P​ git​ x ​​ , ​​P​ nit​ x ​​) clear the machine producer markets; (​​P​ ft​​ , ​P​ gt​​ , ​P​ nt​​​)  
clear the intermediate input markets; (​​w​lft​​ , ​w​lgt​​ , ​w​lnt​​ ​) and (​​w​sft​​ , ​w​sgt​​ , ​w​snt​​​) 
clear the labor and scientist markets, respectively.

II.  Discussion

The model is designed to endogenize the innovation response to energy price 
increases triggered by carbon taxes and oil shocks. Both oil shocks and carbon taxes 
enter the model through the final-good producer’s demand for energy inputs. The 
optimization problem of the representative final-good producer is

(9)	​​   max​ 
​F​t​​, ​G​t​​, ​N​t​​, ​O​ t​ ∗​

​ ​ ​ ​ {​Y​t​​ − (​P​ ft​​ + ​τ​f​​) ​F​ t​​ − ​P​ gt​​ ​G​t​​ − (​P​ ot​ ∗ ​ + ​τ​o​​) ​O​ t​ ∗​ − ​P​ nt​​ ​N​t​​}​​,

subject to the production technology defined in equations (1) and (2). The direct 
effect of the carbon tax is to increase both the fossil energy and the oil import prices, 
while the direct effect of the oil shock is to increase only the oil import price.

The first-order conditions for the machine producer imply that the wages to sci-
entists in each sector are given by (see online Appendix A for the full derivation):

(10)	​​ w​ sf t​​  = ​ 
η γ ​α​f​​ ​A​f t−1​​ ​​(​ 

​S​f t​​ __ ​ρ​f​​ ​)​​​ 
η

​ ​​(​ ​A​t−1​​ ____ ​A​f t−1​​
 ​)​​​ 

ϕ
​ ​P​ f t​​ ​F​ t​​
   _____________________  

​(​  1 ____ 1 − ​α​f​​
 ​)​​S​f t​​ ​A​f t​​

 ​  , ​

	​​ w​ sgt​​  = ​ 
η γ ​α​g​​ ​A​gt−1​​ ​​(​ 

​S​gt​​ __ ​ρ​g​​ ​)​​​ 
η

​ ​​(​ ​A​t−1​​ ____ ​A​gt−1​​
 ​)​​​ 

ϕ
​ ​P​ gt​​ ​G​t​​
   ______________________  

​(​  1 ____ 1 − ​α​g​​
 ​)​​S​gt​​ ​A​gt​​

 ​  , ​

	​​ w​ snt​​  = ​ 
η γ ​α​n​​ ​A​nt−1​​ ​​(​ ​S​nt​​ __ ​ρ​n​​ ​)​​​ 

η
​ ​​(​ ​A​t−1​​ ____ ​A​nt−1​​

 ​)​​​ 
ϕ
​ ​P​ nt​​ ​N​t​​
   ______________________  

​(​  1 ____ 1 − ​α​n​​
 ​)​​S​nt​​ ​A​nt​​

 ​ ​ .

Since the market for scientists is perfectly competitive, the wage of a scientist in 
a given sector equals the marginal return to innovation in that sector. Thus, equa-
tion  (10) shows that the marginal return to fossil innovation is increasing in the 
value of fossil energy production, ​​P​ f​​ F​. This relationship implies that the product 
of price and quantity, ​​P​ f​​ F​ , as opposed to each individual component, (​​P​ f​​​  and ​F​ ) 
is what matters for innovation incentives. Thus, it is important for the quantita-
tive analysis that the calibrated model match this product of price times quantity. 
Similarly, the marginal return to green innovation is increasing in the value of green 
energy production, ​​P​ g​​ G​.

Oil shocks and carbon taxes have opposite effects on fossil energy innovation 
incentives. An oil shock increases fossil energy demand, raising the equilibrium 
value of ​​P​ f​​ F​ and the accompanying innovation incentives. A carbon tax decreases 
fossil energy demand, reducing the equilibrium value of ​​P​ f​​ F​ , and the accompanying 
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innovation incentives. In contrast to their opposite effects on fossil innovation, both 
oil shocks and carbon taxes increase green innovation incentives. Each of these 
shocks increases demand for green energy, raising the equilibrium value of ​​P​ g​​ G​ and 
the accompanying innovation incentives.

The technology accumulation process incorporates both path dependence and 
cross-sector technology spillovers. These two drivers of innovation are captured in 
the marginal return by the term, ​​A​f t−1​​​ and the catchup ratio, ​​​(​A​t−1​​/​A​f t−1​​)​​​ ϕ​​. All else 
constant, path dependence implies that the marginal return to innovation is higher in 
the more advanced sectors, while the catchup effect implies that the marginal return 
to innovation is higher in the less advanced sectors.

Parameter ​ϕ​ measures the strength of the productivity catchup effect. If ​ϕ  =  0​ , 
there are no cross-sector spillovers and there is full path dependence, as in AABH 
and Hémous (2016). Since fossil and green energy are gross substitutes (​​ε​e​​  >  1​), 
this strong path dependence implies that innovation in one energy sector raises the 
relative marginal product of innovation in that sector by so much that the only stable 
balanced growth paths are corner solutions in which innovation occurs in only one 
form of energy.13 In contrast, if ​ϕ  =  1​ , the marginal return to innovation in a sector 
is independent of the previous level of technology in that sector, and, hence, there 
is no path dependence. In this case, there exists a stable interior balanced growth 
path in which innovation occurs in both forms of energy. The value of ​ϕ​ determines 
the relative strengths of the path dependence and cross-sector spillovers and, thus, 
governs the stability of the interior balanced growth path.14

III.  Calibration

I discuss the choice of the model time period, the data for the calibration, and, 
finally, the calibration of the model parameters. Following standard procedure (e.g., 
Gourinchas and Parker 2002), I calibrate the production and innovation components 
of the model in two steps. In the first step, I calibrate a group of parameters directly 
from the data series. In the second step, I use historical oil shocks and the accom-
panying data on energy production and innovation to jointly calibrate the remaining 
parameters. A growing empirical literature that finds a causal relationship between a 
change in energy prices and energy innovation supports this approach.15

A. Time Period

The time period in the model is five years. This choice implies that technology 
spillovers within a sector occur in five years. To determine this time period, I exam-
ine the rate of technology spillovers experienced in solar power (a green industry) 

13 Innovation will also occur in the nonenergy sector since the nonenergy and energy sectors are gross com-
plements. The diminishing returns to innovation imply that the corner solution balanced growth paths only exist 
asymptotically. 

14 Acemoglu (2002) and Hart (2012) show that the strength of the cross-sector technology spillovers can deter-
mine stability of an interior long-run balanced growth path in models of directed technical change. 

15 See, for example, Newell, Jaffe, and Stavins (1999); Popp (2002); Crabb and Johnson (2007); Lanzi and Sue 
Wing (2010); Hassler, Krusell, and Olovsson (2012); Aghion et al. (2016). 
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and in offshore drilling (a fossil industry). In both cases, within-sector technology 
spillovers frequently occur in less than five years. For a full discussion of the spill-
overs in these two industries, see online Appendix B.

B. Data

The National Science Foundation’s (NSF) Survey of Industrial Research and 
Development reports innovation expenditures by US companies from 1953–2007. 
The data include both company- and government-funded R&D expenditures.16, 17 
From 1972–2007, the survey reports energy specific R&D expenditures. I split the 
R&D expenditures into fossil, green, and nonenergy categories.18 Fossil innovation 
corresponds to any R&D expenditures on coal, oil, or natural gas. Green innovation 
corresponds to any energy R&D expenditures that are not in coal, oil, or natural gas. 
This category includes renewables and nuclear, as well as energy conservation and 
efficiency.19 This mapping reflects the broad definition of green energy to encom-
pass both non-carbon sources of energy and improvements in conservation and effi-
ciency, as discussed in Section I. Finally, I measure nonenergy R&D expenditures 
as the difference between total and energy R&D expenditures.

Data on fossil energy prices, fossil energy production, and oil import prices and 
quantities are from the US Energy Information Administration. Data on labor, fixed 
assets, output, and employee compensation are from the US Bureau of Economic 
Analysis (BEA) industry accounts. Following Mork (1989), I use the refiner acqui-
sition cost of imported crude oil to measure the price of oil imports. This measure 
captures differences in the foreign and domestic prices of crude oil due to price 
controls and other policies.

C. Direct Calibration

Table 1 reports the parameter values. I calibrate the following six parameters 
directly from the data series: ​{​α​f​​ , ​α​n​​ , ​ρ​f​​ , ​ρ​g​​ , S, ω}​ , where ​ω  = ​ ω​o​​/​ω​f​​​ measures the 
carbon content of oil imports relative to that of domestic fossil energy.

16 Government-funded research expenditures are defined as “the cost of R&D performed within the company 
under federal R&D contracts or subcontracts, and R&D portions of federal procurement contracts and subcon-
tracts.” The NSF data and documentation are available for download at: https://www.nsf.gov/statistics/iris/start.cfm. 

17 I include both government- and company-funded research expenditures because government-funded R&D in 
the early 1970s arguably responded to market-based incentives. Prior to President Ronald Reagan taking office in 
1981, a specific goal of federal energy policy was to accelerate the development of new marketable technologies, 
making federally funded R&D a potential substitute for company funded R&D (see Popp 2002 for further discus-
sion). Additionally, Lichtenberg (1987) finds a substantial response of government funded R&D to changes in the 
relative price of energy. 

18 The 1972 data only include energy and nonenergy R&D; the split between fossil and green is not available 
during this year. The data after 1972 does include the split between fossil and green. Therefore, I assume that the 
relative split between fossil and green in 1972 is the same as it is in 1973. 

19 Conceptually, it is important to include nuclear energy R&D as part of green R&D because this was seen as 
the main viable alternative to fossil energy in the early 1970s. Major disasters such as the meltdowns at Chernobyl 
and Three-Mile Island had not yet occurred. Excluding nuclear energy would therefore understate the innovation in 
nonfossil energy. Specifically, if agents did not see nuclear as a viable alternative to fossil energy, then there would 
have presumably been more investment in other green energy forms of R&D. However, quantitatively, recalibrating 
and resolving the model excluding nuclear R&D does not make a substantial difference in the effects of endogenous 
innovation on the size of the carbon tax required to achieve the emissions target. 

https://www.nsf.gov/statistics/iris/start.cfm
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I calibrate the labor share in fossil energy, ​1 − ​α​f​​​ , as the cost share of labor in 
value added in the fossil energy sector. Fossil energy corresponds to coal, oil, and 
natural gas extraction, as well as to the production of petroleum and coal products 
(such as gasoline). I map fossil energy to the mining and the petroleum and coal 
products industries (NAICS codes 21 and 324) in the BEA accounts. The average 
labor share over the past 25 years (1987–2012) in these two industries combined 
is 0.28. I use the standard value for labor share in GDP, 0.64, for nonenergy labor 
share, ​1 − ​α​n​​​ , since the nonenergy sector comprises most of the economy.

I normalize the workforce to unity, ​L  =  1​. Approximately 1 percent of workers 
are engaged in R&D in the United States (Jones and Vollrath 2013), and, so I set the 
number of scientists ​S  =  0.01​. I also normalize ​​ρ​n​​​ to unity. Thus, parameters ​​ρ​f​​​ and ​​
ρ​g​​​ capture the number of processes in the fossil and green energy sectors relative to 
the number of processes in the nonenergy sector. I measure these relative levels of 
diversity by the long-run average fractions of fossil R&D to nonenergy R&D and 
green R&D to nonenergy R&D. This measure assumes that average R&D is equal 
across all processes in the long run.

Additionally, I design the model so that the elasticity of substitution between 
energy and nonenergy in the production of output, ​​ε​y​​​ , is close to zero. As this elastic-
ity reaches zero, the specification becomes Leontief. The Leontief condition implies 
that nonenergy inputs, ​N​ , and the CES composite comprised of the energy inputs, ​
E​ , are required in fixed proportions to produce output. Even with this Leontief con-
dition, the amount of the composite comprised of oil imports and fossil energy, ​​F ̃ ​​ , 
used to produce a unit of output can vary since agents can substitute green energy 

Table 1—Parameter Values

Parameter Model value Source

Final good production
Output elasticity of substitution: ​​ε​y​​​ 0.05 —
Energy elasticity of substitution: ​​ε​e​​​ 1.50 —
Fossil elasticity of substitution: ​​ε​f​​​ 6.24 Method of moments
Distribution parameter:† ​​δ ​y​​​ 1.44e-38 Method of moments
Distribution parameter: ​​δ​​F ̃ ​​​​ 0.47 Method of moments

Intermediates production
Labor share in fossil energy: ​1 − ​α​f​​​ 0.28 Data
Labor share in green energy: ​1 − ​α​g​​​ 0.09 Method of moments
Labor share in nonenergy: ​1 − ​α​n​​​ 0.64 Data
Number of workers: ​L​ 1 Normalization
1971–1975 productivity shock: ​ν​ 0.64 Method of moments

Research
Cross-sector spillovers: ​ϕ​ 0.50 —
Diminishing returns: ​η​ 0.79 Method of moments
Scientist efficiency: ​γ​ 3.96 Method of moments
Sector size: ​​ρ​f​​​ 0.01 Data
Sector size: ​​ρ​g​​​ 0.01 Data
Sector size: ​​ρ​n​​​ 1 Normalization
Number of scientists: ​S​ 0.01 Data

Climate
Emissions conversion: ​ω​ 1.03 Data

† The value of the economically relevant quantity is ​​​(​δ​y​​/(1 − ​δ​y​​))​​​ 
​ε​y​​​  =  0.01​. 
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for ​​F ̃ ​​. Empirically, this substitution occurs through increases in renewable energy, 
nuclear, and/or energy efficiency. As discussed in Section I, green energy includes 
all of these channels. Thus, any reduction in ​​F ̃ ​​ requires an increase in green energy 
to produce the same quantity of output. Note that when the elasticity of substitution 
is exactly zero, there are kinks in the equilibrium conditions that are difficult to 
handle numerically. To avoid these numerical difficulties, I set the elasticity of sub-
stitution slightly greater than zero, ​​ε​y​​  =  0.05​.

I use a conservative value for the elasticity of substitution between green energy 
and the composite comprised of fossil energy and oil imports, ​​ε​e​​  =  1.5​. This param-
eter is particularly difficult to pin down because of the lack of aggregate data on 
green energy prices and quantities. Values of similar parameters used in integrated 
assessment and macroeconomic models typically range from unity to ten (Lanzi 
and Sue Wing 2010; AABH) while empirical estimates from Lanzi and Sue Wing 
(2010) and Papageorgiou, Saam, and Schulte (2013) range from 1.6–3. Section IVD 
considers robustness analysis for different values of ​​ε​e​​​ .

Finally, I calibrate ​ω​, the ratio of the carbon content of oil to the carbon content of 
fossil energy. I measure the carbon content of fossil energy as the weighted average 
of the carbon content of coal, oil, and natural gas, where the weights are determined 
by the average quantities produced in the United States in 2012.

D. A Method of Moments

I jointly calibrate the remaining parameters ​{ ​α​g​​ , ​ε​f​​ , ​δ​​F ̃ ​​​ , ​δ​y​​ , η, γ}​ to capture the 
relationships between energy prices, production, and innovation. To obtain empiri-
cal evidence of these relationships, I analyze the energy price increases triggered by 
historical oil shocks and the accompanying changes in energy production and inno-
vation. Empirically, these oil shocks led to large increases in the prices of substitute 
fossil fuels (such as coal and natural gas) in addition to the increases in the price of 
oil. Thus, like a carbon tax, the oil shocks created a substantial increase in the price 
of domestic fossil energy.

In an ideal setting, to calibrate the model parameters I would use data on energy 
price increases triggered by climate policy instead of by oil shocks. However, there 
are not many economy-wide historical examples of climate policies. The clos-
est example is the Emissions Trading System in the European Union (EU-ETS). 
However the EU-ETS carbon permit price has been very unstable. In both the 
pilot period (2005–2007) and the first trading period (2008–2012), the EU 
over-allocated carbon permits and the price effectively fell to zero. Another alter-
native to using oil shocks is to use the variation in gas taxes (or other energy taxes) 
across countries. However, these taxes are usually specific to a single sector, such 
as transportation, and, thus, are not necessarily representative of how the aggre-
gate economy would respond to a carbon tax that applies to all carbon-emitting 
fuels. The oil shocks and the accompanying data on energy production and inno-
vation are a rare historical example of the economic response to an aggregate 
increase in fossil energy prices.

I focus on the oil shocks triggered by the rise of the Organization of Petroleum 
Exporting Countries (OPEC) in the first half of the 1970s. I use the oil shocks of the 
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early 1970s instead of more recent oil shocks for two reasons. First, because a car-
bon tax will likely be permanent, it is important to calibrate to an aggregate increase 
in energy prices that agents at least believe to be permanent. After the rise of OPEC 
in the early 1970s, there was a sense that the economy had permanently switched 
from a low-energy-price regime to a high-energy-price regime. Energy price fore-
casts during the 1970s and early 1980s generally do not predict falling energy 
prices, suggesting that agents believed that the oil shocks were very long-lived.20 
However, after oil prices began to fall in the mid-1980s, agents potentially learned 
that this regime switch was not permanent and that oil shocks could be temporary. 
The model implicitly assumes that oil price changes are expected to be permanent. 
This makes using later oil shocks inappropriate since expectations likely violated 
this assumption.

Second, a convenient way to introduce an oil shock is to model the economy on 
a balanced growth path (in which energy prices are constant) and then shock it with 
an oil shock. The 1970s is the most recent time period that matches these dynamics. 
That is, a long period of price stability, real energy prices were relatively constant 
for the 20 years prior to the 1970s, followed by an unexpected jump in the oil price. 
To summarize, I have calibrated to the early 1970s oil shocks because it is the only 
historical episode that arguably matches the model’s assumptions of being on a bal-
anced growth path when there is a large and exogenous change in the price of oil 
imports that agents perceive to be permanent.

One limitation with using the early 1970s oil shocks to pin down the model 
parameters is that they happened 40 years ago. It is possible that some of the param-
eter values could have changed over time. Even so, any meaningful inference from 
a calibrated growth model requires the assumption of parameter constancy. And the 
parameters can be constant at values calibrated from any episode along the equi-
librium path, whether the episode is early or late. As a check on the assumption of 
parameter constancy, I analyze the effects of the 2003 oil shock in both the model 
and the data in online Appendix C.21 In particular, I calculate the responses of fossil 
and green innovation to a change in the price of oil imports. The responses are simi-
lar in the model and the data, suggesting that the parameter values that govern these 
responses have not changed substantially over time.

The early 1970s oil shocks coincided with a decline in the capacity of US oil 
fields (Hamilton 2009) and with changes in energy and environmental policies. 
These events likely affected energy innovation incentives, and so it is important 
to account for them in the calibration strategy. In particular, the EPA was initiated 
on December 2, 1970, and with it came the authority for the federal government 
to implement and enforce environmental regulation. This major regulatory change 
launched the United States into a new era of environmental stewardship (Berman 
and Bui 2001). Examples of influential environmental regulation from the early 
1970s include the Clean Air Act, which limited emissions from coal power plants 

20 See, for example, Levy (1979); Energy Information Administration (1979); Energy Modeling Forum (1982). 
21 As discussed earlier, I do not calibrate to the 2003 oil shock because energy prices and energy innovation are 

not stable for a sustained period preceding the 2003 oil shock, suggesting that the assumption that the economy was 
on a long-run balanced growth path prior to the shock is imperfect. Moreover, after the 1970s, agents learned that 
energy prices are uncertain, and they formed expectations over future energy prices. 
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and oil refineries, and the Clean Water and Safe Drinking Water Acts, which placed 
restrictions on fossil energy companies’ hazardous waste. Congress also passed a set 
of health and safety regulations in underground coal mines which reduced mining 
labor productivity (Bohi and Russell 1978).

In addition to this new era of environmental protection, the government imple-
mented a series of oil price controls and windfall profits taxes on oil companies, 
which lasted from 1971 until 1982 when President Reagan deregulated the industry. 
These price distortions drove a wedge between the prices of imported and domestic 
oil and led to energy shortages. Furthermore, oil import restrictions were relaxed 
considerably in 1973 (Bohi and Russell 1978). The share of oil imports increased 
throughout most of the 1970s despite their rising cost.

All of these policies likely reduced the profitability of fossil energy extraction 
and the accompanying innovation incentives. To account for these coincident events 
in the calibration, I model effects of the policy changes together with the decline 
in the capacity of US oil fields as a negative productivity shock, ​ν​ , to fossil energy 
production:

(11)	​​ F​ t​​  = ​ ν​t​​ ​L​ f  t​ 
1−​α​f​​​ ​∫ 

0
​ 
1
​​ ​X​ f it​ 

​α​f​​​ ​A​ f it​ 
1−​α​f​​​ di.​

Since the model is not sufficiently detailed to accurately incorporate each individual 
regulation change, I use the reduced-form productivity shock to capture the overall 
effects of the new regulation and the decline in oil capacity.

I jointly calibrate the parameters to match the data generated by the oil and pro-
ductivity shocks of the early 1970s in the US economy with the data generated by 
the following experiment in the model: 

Initial Balanced Growth Path (1961–1970): The economy is on a balanced 
growth path with respect to the price of oil imports and environmental and energy 
policies. 

Shock Period (1971–1975): Two unexpected shocks realize: (i) the price of oil 
imports increases from its value on the balanced growth path; and (ii) a negative 
productivity shock affects domestic fossil energy production.

Environmental policy and the price of oil imports were relatively constant prior 
to the 1970s, allowing me to begin the experiment on a balanced growth path. I 
match this balanced growth path to data from 1961–1970. I begin the shock period 
in 1971 because the EPA was created in December of 1970, launching the United 
States into a new era of environmental regulation. Since this regulation was a major 
turing point in US environmental policy, it arguably knocked the United States off 
its balanced growth path and stimulated green energy investment and innovation. I 
measure the size of the oil shock by the observed percentage change in the average 
price of oil imports from 1971–1975 relative to its average value from 1961–1970. 
Both shocks are unexpected by the agents on the balanced growth path since they 
were unprecedented in the data. Machine production decisions are made prior to 
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the realization of the shocks, while scientist and labor decisions are made after the 
shocks realize.22

I construct moments from this experiment so that the model matches the inno-
vation incentives that coincided with the oil shocks and regulatory changes. Four 
important moments are the values of fossil energy production and oil imports (as 
shares of GDP) in both the balanced growth path and in the shock period. As shown 
in equation (10) and discussed in Section II, the values of fossil and green energy 
production (​​P​ f​​ F​ and ​​P​ g​​ G​) are primary determinants of the innovation incentives 
in each of these sectors. However, data on the value of green energy production is 
not available. But one important component of the value of green energy produc-
tion is the value of imported oil and data is available for the value of imported oil. 
Specifically, equation (12) (derived from the first-order conditions for the final good 
producer, see online Appendix A) shows that ​​P​ g​​ G​ is directly proportional to the 
value of the composite comprised of oil imports and fossil energy, ​​P​ ​F ̃ ​​​​F ̃ ​​ :

(12)	​​ P​ gt​​ ​G​t​​  = ​ P​​F ̃ ​t​​ ​​F ̃ ​​ t​​ ​​(​ ​P​ ​F ̃ ​t​​ ___ ​P​ gt​​
 ​)​​​ 

​ε​e​​−1

​ .​

The CES properties of the production functions imply that the value of this com-
posite equals the sum of the values of fossil energy production and oil imports:  
​​P​ ​F ̃ ​f​​ ​​F ̃ ​​ t​​  = ​ P​ f t​​ ​F​ t​​ + ​P​ ot​ ∗ ​ ​O​ t​ ∗​​. Therefore, the value of oil imports is also important for cap-
turing innovation incentives.

Two more relevant moments are the research expenditures on fossil and green 
energy as a fraction of total research expenditures. The energy research data are 
not available until 1972, so I construct the empirical averages from 1972–1975. 
Research expenditures in the data correspond to the wage multiplied by the number 
of scientists in the model. Scientist market clearing implies that the scientists’ wages 
are equated across all sectors. Therefore, the fraction of research expenditures in fos-
sil energy in the data corresponds to the fraction of scientists in fossil energy in the 
model (and likewise for green energy research). Table 2 reports the empirical values 
of the moments in both the balanced growth path and the shock period. Additionally, 
I target the annualized long-run growth rate of GDP per capita of 2 percent.

This process yields seven moments (those listed in Table 2 plus the long-run 
growth rate of per capita GDP) for the six parameters and the productivity shock, ​ν​.  
For each set of parameters, I solve the model, compute the moments, and com-
pare them with the moments in the data. I use the Nelder-Mead simplex algorithm 
(Nelder and Mead 1965) to minimize the sum of the square of the residuals between 
the empirical and model values of the moments.23 The model fits the data very 
closely; the minimized distance is 2.2 ​× ​10​​ −21​​. Online Appendix C evaluates the 
fit of the model against five non-targeted moments. The values of these moments 
are relatively similar in the model and the data, suggesting that the model’s fit is 

22 The empirical evidence supports these timing assumptions. The change in the fraction of fixed assets in the 
fossil energy sector (relative to total fixed assets) is very small from 1971–1975. In contrast, the fraction of energy 
research expenditures relative to total research expenditures almost doubles from 1972 to 1975. 

23 Specifically, I modify routine 10.4 in Press et al. (1992). 
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reasonably strong. Online Appendix D reports bootstrapped standard errors for the 
parameters calibrated from the method-of-moments procedure. The standard errors 
suggest a reasonable degree of precision for most of the parameter estimates.

While all of the parameters are jointly determined, the shares of fossil energy 
production and oil imports on the initial balanced growth path are pinned down 
primarily by the CES distribution parameters, ​​δ​​F ̃ ​​​​ and ​​δ​y​​​ . The movements in these 
shares are largely governed by the productivity shock, ​ν​ , and the elasticity of sub-
stitution between fossil energy and oil imports, ​​ε​f​​​  . For example, if fossil energy and 
oil imports are more substitutable, then the oil shock leads to a larger increase in 
demand for fossil energy, which leads to a bigger increase in the fossil energy price, 
quantity, or both. Hence, increases in this substitution elasticity result in a larger 
increase in fossil energy production (as a share of GDP) in response to the oil shock.

The research expenditure moments primarily pin down the level of diminish-
ing returns, ​η​ , and the labor share in green energy, ​1 − ​α​g​​​ . The price elasticity of 
demand for green machines is ​1/(1 − ​α​g​​)​. All else constant, increases in labor share 
reduce the price elasticity of demand. Less elastic demand increases the machine 
producer’s optimally chosen machine price, raising the returns to innovation (see 
online Appendix A for the derivation and further discussion). Parameter ​γ​ deter-
mines the long-run growth rate.

The calibration strategy does not pin down the strength of the cross-sector spill-
overs, ​ϕ​. All else constant, this parameter determines the relative levels of energy 
technology on the balanced growth path. For example, if the cross-sector spillovers 
are relatively weak (​ϕ​ is small), then the only stable balanced growth paths are cor-
ner solutions in which all innovation occurs in a single energy sector. In this case, 
the levels of fossil and green technology would grow farther and farther apart along 
the balanced growth path. Alternatively, if the cross-sector spillovers are relatively 
strong (​ϕ​ is big), then there exists a stable interior balanced growth path in which 
innovation occurs in both fossil and green energy. In this case, the ratio of fossil to 
green technology would be constant along the balanced growth path. Moreover, the 
closer this constant ratio is to unity, the stronger the cross-sector spillovers. Data on 
energy innovation (and thus on technology) are not available on the balanced growth 
path of the 1960s, making it difficult to pin down a value for ​ϕ​.

However, the data do provide suggestive evidence that the value of ​ϕ​ is greater 
than 0.2, the cutoff for which interior balanced growth path in which agents inno-
vate in both energy sectors is stable. If instead ​ϕ  <  0.2​ , then this would imply 
that green innovation was zero along the balanced growth path of the 1960s, since 

Table 2—Data in the Balanced Growth Path and Shock Period

Balanced growth path Shock period

Fossil energy production share 1.9 2.1
Oil imports share 0.2 0.8
Percent of R&D expenditures in fossil — 2.1
Percent of R&D expenditures in green — 3.4

Notes: The values on the balanced growth path are equal to the empirical average from 1961–
1970. The values during the shock period are equal to the empirical average from 1971–1975.

Source: Author’s calculations based on data from the BEA, EIA, and NSF Survey of Industrial 
Research and Development
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fossil innovation was clearly greater than zero during this time. However, major US 
companies were involved in green R&D in the 1960s. For example, General Electric 
designed the first boiling water nuclear reactor in 1960 and invented the LED light-
bulb in 1962, while Sharp Corporation invented practical silicon photovoltaic mod-
ules in 1963 (an early advance in solar technology). Additionally, in the early 1970s, 
green innovation expenditures were over half of all energy innovation expenditures. 
It is highly unlikely that green innovation would go from nonexistent to over half 
of all energy innovation in such a short time frame. Combined, these two pieces of 
evidence imply that the cross-sector spillovers must be sufficiently strong so that 
positive innovation occurred in both fossil and green energy along the 1960s’ bal-
anced growth path. I set ​ϕ  =  0.5​ in the main specification. In online Appendix F, I 
report the main results for a range of values of ​ϕ  >  0.2​.

Labor share in green energy is 0.09, implying that green energy is a very 
capital-intensive sector. Consistent with this calibration, green energy technolo-
gies, such as nuclear, solar, and, particularly energy efficiency, are all very capital 
intensive. The elasticity of substitution between fossil energy and oil imports, ​​ε​f​​​  , is 
considerably higher than that between green energy and the composite comprised 
of fossil energy and oil imports, ​​ε​e​​​ , (6.24 compared to 1.5), suggesting that fossil 
energy is a better substitute for oil imports than green energy. This is intuitive since 
one component of fossil energy is domestically produced oil, which is a perfect 
substitute for imported oil. The diversities of the energy sectors, ​​ρ​f​​​ and ​​ρ​g​​​ , are both 
small compared to the nonenergy sector.

The calibrated value of the distribution parameter, ​​δ​y​​​ , is very small. This is 
because the elasticity of substitution between energy and nonenergy inputs in 
the production of output, ​​ε​y​​​ , is also very small, (​​ε​y​​  =  0.05​). The value of the 
quantity that is economically relevant for the optimal allocation between energy  
and nonenergy inputs, ​​​(​δ​y​​/(1 − ​δ​y​​))​​​ 

​ε​y​​​​ , (see equation (A2) in online Appendix A) is  

considerably larger ​​(​​(​δ​y​​/(1 − ​δ​y​​))​​​ 
​ε​y​​​  =  0.01)​​.

Additionally, the calibrated size of the productivity shock, ​ν​ , is 0.64, suggesting 
that the combined effects of the environmental regulations, the distortions created 
by price controls and import policies, and the declining capacity of US oil fields 
substantially reduced productivity in fossil energy. This result relates to the litera-
ture linking the productivity slowdown to increased environmental regulation in the 
1970s (e.g., Gray 1987). To comply with the regulations, firms must divert resources 
away from output production, lowering productivity.

E. Comparison to Empirical Studies

As an additional check on both the calibration and the model specification, it is use-
ful to compare the implications of the calibrated quantitative model with the empirical 
literature on energy prices and innovation. Both Popp (2002) and Aghion et al. (2016) 
calculate the elasticity of green energy patents with respect to a change in energy 
prices. Popp (2002) estimates this elasticity from aggregate US time series data from 
1970–1994 on fossil energy prices and green energy patents in 11 energy technol-
ogies. Six of these technologies relate to energy supply (such as solar) and five to 
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energy demand (such as the reuse of industrial waste heat). Aghion et al. (2016) focus 
on the automobile industry. They use a cross-country, firm-level panel on green car 
patents (e.g., hybrid vehicle technologies) and tax-inclusive gas prices to estimate 
the price elasticity of R&D in green car technologies. The five-year price elasticity 
of green patents is 0.21 in Popp (2002) and is 3.7 in Aghion et al. (2016).24

To compare these empirical results with the present paper, I rewrite the technol-
ogy accumulation equation for green technology (equation (4)) as the sum of the 
existing green technology stock and new green ideas, ​​​g​​​:

(13)	​ ​A​gt​​  = ​ A​gt−1​​ + ​​gt​​  where ​ ​gt​​  =  γ ​​(​ 
​S​gt​​ ___ ​ρ​g​​ ​)​​​ 

η

​ ​A​ t−1​ 
ϕ ​ ​ A​ gt−1​ 

1−ϕ ​ .​

New green ideas are the flow input into technology and, thus, correspond to green 
patents in the data. Let ​​P​​F ̃ ​​​​ be the tax-inclusive price of the composite comprised 
of fossil energy and foreign oil (see equation (A3) in online Appendix A). The 
(one-period) elasticity of new green ideas with respect to a change in ​​P​​F ̃ ​​​​ from the 
introduction of a carbon tax is

(14)	​ ϵ  = ​ (​ 
​​g​t​​ ∗​​​ − ​​g​t​​ ∗​−1​​  __________ ​​g​t​​ ∗​−1​​

 ​ )​​(​  ​P​ ​F ̃ ​​t​​ ∗​−1​​ __________  ​P​ ​F ̃ ​​t​​ ∗​​​ − ​P​ ​F ̃ ​​t​​ ∗​−1​​
 ​)​, ​

where ​​t​​ ∗​​ is the period in which the carbon tax is introduced.25

The value of this elasticity in the model is 1.7. This estimate is between the esti-
mates in Popp (2002) and Aghion et al. (2016). One explanation for why the model 
value of the elasticity is larger than the estimate in Popp (2002) is that the green 
innovation in the sectors covered in Popp’s study is less responsive to changes in ​​
P​ ​F ̃ ​​​​ than green innovation in the average sector. However, a second explanation for 
the different elasticity is the source of the change in ​​P​ ​F ̃ ​​​​ . Popp’s calculation uses 
aggregate variation in fossil energy prices from oil shocks (or similar macroeco-
nomic events) instead of from a carbon tax. While both oil shocks and carbon taxes 
increase incentives for green innovation, oil shocks also increase incentives for fos-
sil innovation. If there is crowd-out between fossil and green innovation, then the 
price elasticity of green innovation will be smaller when the price change is caused 
by an oil shock than when it is caused by a carbon tax. Consistent with this hypoth-
esis, the model elasticity of green ideas from an increase in ​​P​ ​F ̃ ​​​​ from an oil shock 
is 1.3, approximately 25 percent smaller than the elasticity from a carbon tax. In a 
related empirical patent study, Popp and Newell (2012) find suggestive evidence of 
this crowd-out within energy supply technologies (such as oil refining and solar).

One explanation for why the model value of the elasticity is smaller than the 
estimate in Aghion et al. (2016), is that innovation in green car technologies is more 
responsive than average green innovation to changes in the fossil energy price. 
Some of the variation in gas prices comes from differences in the gas tax and some 

24 Both Popp (2002) and Aghion et al. (2016) estimate a dynamic specification, which make it possible to 
compute the five-year elasticity. See Table 4 in Popp (2002) and Table 10 in Appendix C in Aghion et al. (2016). 

25 Prior to period ​​t​​ ∗​​ , the economy is on a balanced growth path. 
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comes from oil shocks. However, since the automobile industry does not supply 
fossil energy, price changes from oil shocks and carbon taxes should create similar 
incentives for innovation in green car technologies. Thus, differences in the elastic-
ity estimates due to crowd-out are not as likely in this case.

IV.  Results

I perform two exercises to fully explore the interactions between endogenous 
innovation and climate policy. In both exercises, the economy begins on the same 
baseline balanced growth path, but innovation is endogenous in the first and exoge-
nous in the second. I introduce constant carbon taxes in the 2015–2019 time period. 
I choose the size of the tax in each exercise to achieve a 30 percent reduction in 
emissions from the baseline balanced growth value in 20 years, that is, by the 2030–
2034 time period. The size of the tax necessary to achieve the emissions target is 
different for economies with endogenous versus exogenous innovation.26

The endogenous-innovation model is my benchmark model. Machines, workers, 
and scientists all adjust in response to the tax. The exogenous-innovation model 
has the endogenous innovation channel shut down. Unlike in the endogenous- 
innovation model, only machines and workers adjust in response to the tax; the 
scientists (and hence the levels and growth rates of technology) are fixed at their 
baseline balanced growth values.

A. Carbon Tax: The Role of Endogenous Innovation

The carbon taxes required to achieve the emissions target are 30.3 and 24.5 in 
2013 dollars per ton of CO2 in the exogenous- and endogenous-innovation mod-
els, respectively. The required carbon tax is 19.2 percent lower when innovation is 
endogenous. The intuition for this result is that regardless of whether innovation 
is endogenous, the carbon tax operates through prices to shift demand from fossil 
to green energy, reducing emissions. However, when innovation is endogenous, 
this shift in demand increases green innovation and decreases fossil innovation. 
Over time, this change in innovation reduces the marginal cost of producing green 
energy relative to fossil. This lowers the relative price of green to fossil energy, 
creating stronger incentives for the final-good producer to switch from fossil to 
green. Thus, endogenous innovation amplifies the price incentives created by the 
carbon tax, implying that the same reduction in emissions can be achieved with a 
smaller tax.

An analogous interpretation of this result is that endogenous innovation increases 
the emissions reduction from a given-sized carbon tax. In particular, if the carbon 
tax is $30.3 per ton, then endogenous innovation increases the percent reduction 
in emissions by close to 5 percentage points (from 30 percent to 34.6 percent). A 
policy implication of these results is that if the government designs a cap-and-trade 

26 In both exercises, I hold the value of the productivity shock and the foreign oil price constant. The produc-
tivity shock equals unity. The foreign oil price equals 2.15 times the domestic fossil energy price on the balanced 
growth path, its average empirical relationship from 2001 to 2010. 
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system to achieve a target permit price (perhaps because a carbon tax is politically 
infeasible), then endogenous innovation implies that the government should issue 
fewer permits in order to achieve its price target. This implication is particularly 
relevant for the case of the EU-ETS where, for several reasons, governments 
over-allocated permits and the price fell below the desired level.

The finding that the carbon tax necessary to achieve the emissions target is 
19.2 percent lower when innovation is endogenous is sensitive to both the size of the 
targeted reduction in emissions and the time frame in which the reduction must be 
achieved. Online Appendix E analyses the effects of innovation for different-sized 
emissions targets and different time frames. In particular, the effect of endogenous 
innovation on the size of the carbon tax is smaller if the target is more stringent or 
the time frame is shorter. More stringent targets and shorter time frames force agents 
to rely less on technological advances and more on shifts in production factors (i.e., 
workers and machines) to achieve the emissions target. This switch reduces the role 
of endogenous innovation and its accompanying effects on the size of the required 
carbon tax.

Table 3 provides more details on the mechanisms driving the effects of endoge-
nous innovation. Column 2 of Table 3 reports the values on the baseline balanced 
growth path. Each row in columns 3–5 reports a measure of the treatment effect; 
they show the percentage difference from the baseline in each of the variables 
after 20 years (i.e., in the 2030–2034 time period) and on the long-run balanced 
growth path under the carbon tax. For example, the first row of column 4 implies 
that when innovation is endogenous, fossil energy scientists are 60.5 percent 
lower than their baseline value after 20 years under the tax. Table 3 does not 
include a column for exogenous innovation on the long-run balanced growth path 
because there are no transitional dynamics when innovation is exogenous; the val-
ues after 20 years equal the values in the long-run balanced growth path under the  
carbon tax.

The carbon tax leads to large shifts in fossil and green innovation and relatively 
small movements in nonenergy innovation (innovation segment of Table 3). After 
20 years, the tax reduces fossil innovation by 60.5 percent, increases green innova
tion by 53.3 percent, and increases nonenergy innovation by 0.4 percent.27 These 
results suggest that the increased green innovation comes at the expense of (i.e., 
crowds out) fossil innovation and not nonenergy innovation. Since fossil and green 
energy are gross substitutes, the tax shifts demand from fossil to green energy, 
increasing the green innovation incentives. In contrast, because the energy and non-
energy inputs are almost perfect complements, the effects of the tax on the value 
of nonenergy production and the corresponding innovation incentives are small. 
These movements in innovation affect relative technology. After 20 years, the ratio 
of green to fossil technology is 44.5 percent higher than in the baseline. On the 
long-run balanced growth path, this ratio is more than double its baseline value.

The prices segment of Table 3 shows the effects of the tax on relative prices. When 
innovation is endogenous, the relative price of green compared to fossil energy falls 

27 While the overall number of scientists is fixed, the sum of the percentage change of the number of scientists 
in each sector does not equal zero because the baseline levels are very different. 
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by 7.0 percent after 20 years and by 17.1 percent on the long-run balanced growth 
path. The fall in the relative price of green to fossil energy results from both the 
increase in green innovation and the decrease in fossil innovation. Increases in 
green innovation reduce the marginal cost of green energy production, reducing the 
relative price of green to fossil energy. Decreases in fossil innovation raise the mar-
ginal cost of fossil energy production (relative to the baseline), raising its price, and, 
thus, further reducing the relative price of green to fossil energy. In contrast, when 
innovation is exogenous, there is almost no change in the relative marginal costs 
of the different inputs, and relative prices are almost the same as on the baseline 

Table 3—Effects of a Carbon Tax That Achieves a 30 Percent Emissions Reduction 
in 20 Years

Percent difference from the baseline

Exogenous Endogenous Endogenous
Baseline innovation innovation innovation

level (in 20 yrs.) (in 20 yrs.) (long run)

Innovation
Fossil scientists: ​​S​f​​​ 1.5e-04 0 −60.5 −29.9
Green scientists: ​​S​g​​​ 1.0e-04 0 53.3 23.8
Nonenergy scientists: ​​S​n​​​ 9.7e-03 0 0.4 0.2

Relative technology

Green to fossil: ​​ 
​A​g​​ __ ​A​f​​

 ​​ 0.4 0 44.5 144.6

Green to nonenergy: ​​ 
​A​g​​ __ ​A​n​​

 ​​ 0.9 0 16.9 39.3

Relative prices

Green to fossil: ​​ 
​P​ g​​ __ ​P​ f​​

 ​​ 1.1 0.2 −7.0 −17.1

Green to nonenergy: ​​ 
​P​ g​​ __ ​P​ n​​

 ​​ 1.4 0.6 −1.0 −2.6

Energy to nonenergy: ​​ 
​P​ e​​ __ ​P​ n​​

 ​​ 3.9 14.9 13.0 14.6

Relative production

Green to fossil: ​​ G __ 
F ​​ 1.4 78.0 79.2 112.9

Energy to nonenergy: ​​ E __ 
N ​​ 0.01 −0.7 −0.6 −0.7

Relative wages

Scientist to worker: ​​ 
​w​s​​ __ ​w​l​​ ​​ 2.7 — −0.1 −0.1

Climate
Emissions — −30.0 −30.0 −36.9

Notes: The baseline is the balanced growth path with no carbon tax. This balanced growth 
path is the same in the endogenous- and exogenous-innovation models. The percent difference 
from the baseline under exogenous (endogenous) innovation in 20 years is the percent differ-
ence in the value of the variable in the exogenous-innovation (endogenous-innovation) model 
from its value in the baseline in the 2030–2034 time period. The long run refers to the long-run 
balanced growth path under the carbon tax. The values on the long-run balanced growth path 
under exogenous innovation are the same as the values in 20 years because there are no tran-
sitional dynamics when innovation is exogenous. Variable ​​P​ e​​​ is the tax-inclusive price of the 
CES composite of fossil energy, green energy, and oil imports, E.
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balanced growth path.28 Therefore, almost all of the change in the energy prices in 
the endogenous-innovation model results from changes in technology.

The production segment of Table 3 reports the effects of the carbon tax on the 
production of the different intermediate inputs. At the 20-year mark, the changes 
in the relative quantities of green compared to fossil energy production are similar 
between the endogenous- and exogenous-innovation models because the carbon tax 
achieves the same reduction in emissions. However, the long-run effects are very 
different; on the new balanced growth path, the tax increases the ratio of green to 
fossil production by 112.9 percent in the endogenous-innovation model compared 
to by only 78.0 percent in the exogenous-innovation model. This difference arises 
because green technology keeps growing relative to fossil after the 20-year mark, 
further decreasing the relative price of green energy and, thus further increasing 
the final-good producer’s green energy demand. Unlike fossil and green energy 
production, the changes in the ratios of energy to nonenergy production are almost 
zero. Since the elasticity of substitution between energy and nonenergy inputs is 
close to zero, the final-good producer must substitute green energy for fossil energy 
and oil imports to reduce emissions, instead of substituting nonenergy inputs for 
energy inputs.

The relative wage segment of Table 3 reports the effects of the carbon tax on the 
return to supplying labor as a scientist, ​​w​s​​​ , relative to the return to supplying labor as 
a worker, ​​w​l​​​ . The carbon tax has almost no effect on the relative returns; on the new 
long-run balanced growth path, the return to scientists relative to the return to work-
ers is only 0.1 percent smaller than its value in the baseline. This near constancy 
suggests that the carbon tax would not lead to substantial changes in the relative 
quantities of scientists and workers, supporting the assumption of fixed supplies of 
scientists and workers.

Finally, I calculate the CEV to quantify the gross welfare costs of the policy. The 
CEV is the uniform percentage increase in an agent’s consumption in the baseline 
that is necessary to make him indifferent between the baseline and the carbon tax 
scenarios. The CEVs are −0.3 percent and −0.4 percent in the endogenous- and 
exogenous-innovation models, respectively.29 Total consumption for all individu-
als in the United States from 2008–2012 was approximately $53,671 billion (2012 
dollars), so the CEVs in the endogenous- and exogenous-innovation models equal 
approximately −$172 and −$225 billion, respectively.30

Endogenous innovation reduces the gross welfare cost of the policy by 0.1 per-
centage points. Endogenous innovation affects the gross welfare costs through 
three partially offsetting channels. First, the carbon tax is smaller when innova-
tion is endogenous; hence, the accompanying gross distortionary cost is smaller. 
Second, green energy is technologically behind fossil energy when the government 
implements the tax. Thus, the tax shifts energy production to a less productive 

28 Energy prices under the tax in the exogenous-model are not identical to their baseline values because the 
general equilibrium effects lead to small changes in the wage. These changes have different effects on the marginal 
cost of production in the different sectors, which, in turn, affect relative prices. 

29 To calculate the CEV, I set the annual rate of time preference to 1.5 percent and the intertemporal elasticity of 
substitution to the standard value of one half, ​θ  =  1/2​. 

30 See BEA personal consumption expenditures. 
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sector. Endogenous innovation reduces these productivity losses as green technol-
ogy catches up to fossil. Third, the shift in innovation from fossil to green energy 
reduces the aggregate growth rate along the transition path to a new long-run equi-
librium. This temporary reduction in growth raises consumption costs and mutes the 
gross welfare gain from endogenous innovation.

This paper is focused on the key mechanisms driving the interaction between 
innovation and climate policy. However, the results have interesting and opposing 
implications for the effects of endogenous innovation on the size of the optimal car-
bon tax. Endogenous innovation reduces the size of the tax necessary to achieve a 
given abatement target, implying a smaller optimal carbon tax. Working in the other 
direction, endogenous innovation also reduces the marginal abatement costs, raising 
the optimal abatement target, implying a larger carbon tax. Determining which of 
these two effects dominate is beyond the scope of this paper and is an interesting 
avenue for future research.

B. Dynamics

I discuss the dynamics along the transition to the new balanced growth path, 
focusing explicitly on the general equilibrium forces driving innovation. Figure 
1 plots the dynamics with respect to four key variables in response to the carbon  
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tax: (i) the market size of green relative to fossil energy (measured by the rela-
tive levels of employment, ​​L​g​​/​L​ f​​​), (ii) the price of green relative to fossil energy,  
​​P​ g​​/​P​ f​​​ , (iii)  the percent of fossil energy scientists, and (iv) the percent of green 
energy scientists. The tax shifts demand from fossil to green energy, leading to an 
immediate jump in the green energy market size (panel A of Figure 1) and in the 
percents of fossil and green energy scientists (panels C and D of Figure 1). The 
surge in green innovation relative to fossil leads to a gradual improvement in the 
relative level of green technology, which reduces the relative price of green energy 
over time (panel B of Figure 1). The fall in the relative price slowly decreases green 
innovation incentives, causing green energy scientists to asymptote to a new equi-
librium level, below their initial jump but above their value on the original balanced 
growth path.

C. Comparison to Earlier Work

AABH find that climate policy and endogenous innovation tip the economy to 
a new long-run equilibrium where green technology grows and fossil technology 
is constant. The results in the present paper indicate somewhat smaller effects of 
endogenous innovation on climate policy outcomes than in AABH. These different 
findings are primarily due to two key parameters: the diminishing returns to innova-
tion, ​η​ , and the strength of the cross-sector technology spillovers, ​ϕ​. Stronger dimin-
ishing returns to innovation (lower ​η​) create incentives to spread scientists across 
both the fossil and green energy sectors. This spreading reduces the effect of a car-
bon tax on the direction of technical change. Stronger cross-sector spillovers (higher ​
ϕ​) reduce the path dependence in innovation. Green technology accumulates faster 
than fossil technology in response to the carbon tax. If some of the new green dis-
coveries are applicable to fossil energy, then these spillovers indirectly encourage 
innovation in fossil energy. The calibration in the present paper uses middle values 
for both ​η​ and ​ϕ​: ​η  =  0.79​ , ​ϕ  =  0.5​ , while AABH use ​η  =  1​ and ​ϕ  =  0​. This 
implicit parameter choice in AABH increases the role of endogenous innovation 
relative to the present paper.

It is also useful to compare the results of the present paper to the results from 
three closely related papers on endogenous innovation in integrated assessment cli-
mate-economy models: Goulder and Schneider (1999), Popp (2004), and Gerlagh 
(2008). In their seminal paper, Goulder and Schneider develop both analytical and 
numerical climate-economy models with endogenous innovation. While their mod-
els are largely qualitative, they find that the inclusion of endogenous innovation 
increases the amount of abatement from a given sized carbon tax, consistent with 
the present paper.

Popp (2004) modifies the DICE model of climate change (Nordhaus and Boyer 
2000) to include endogenous innovation in a single energy sector and quantifies 
its effects on climate policy outcomes. Relative to the present paper, Popp (2004) 
finds that including endogenous energy innovation has very small implications for 
the size of the carbon tax necessary to achieve a given emissions target, but consid-
erably larger effects on welfare. Gerlagh (2008) develops a model that allows for 
endogenous innovation in multiple sectors. Relative to the present paper, he finds 
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larger effects of endogenous innovation on the size of the carbon tax necessary to 
achieve a given climate target.31

These differences largely arise because the models in the earlier work are more 
complex in some ways but are reduced form in other ways. For example, Popp 
(2004) focuses on the effects of endogenous innovation on the optimal time path of 
the carbon tax. Solving for this optimal time path comes at the expense of incorpo-
rating general equilibrium features such as the production of fossil energy, endog-
enous energy prices, a green energy sector, and endogenous innovation in more 
than one sector. Similarly, Gerlagh (2008) does not directly model a green energy 
sector and his calibration procedure assumes that the economy is in steady state with 
respect to energy (and other variables) from 1970–1990. Such an assumption is at 
odds with the data on energy prices and innovation and Gerlagh stresses that a more 
robust calibration procedure is essential for future work.

Unlike much of the previous environmental literature, the present paper specifi-
cally models the general equilibrium effects from endogenous innovation in each of 
two energy sectors (green and fossil) and in a third sector comprising the rest of the 
economy. These features influence the effects of endogenous innovation on climate 
policy outcomes along three important dimensions.

First, the potential for innovation in fossil, green, and nonenergy sectors is 
important for obtaining a plausible calibration that applies to the whole economy. 
This three-sector design facilitates a direct mapping to the data on fossil, green, and 
nonenergy R&D, which can be difficult to obtain otherwise. Moreover, the model 
framework allows for the distinction between the innovation incentives offered by 
the carbon tax versus those offered by higher energy prices due to non-tax induced 
changes in energy supply or demand. This distinction is crucial for obtaining a real-
istic calibration based on historical data in which higher energy prices occurred 
because of supply or demand changes instead of from a carbon tax.

Second, the general equilibrium, three-sector framework fully endogenizes the 
relative price of green to fossil energy. This relative price is the primary determi-
nant of firms’ energy choices and, hence, of aggregate emissions. The relative price 
depends on the levels of innovation in both the fossil and the green energy sectors. 
If the policy causes green innovation to increase above its baseline level, then the 
marginal cost of producing green energy falls, reducing the relative price of green 
to fossil energy. If the policy also causes fossil innovation to decrease below its 
baseline level, then the marginal cost of producing fossil energy rises (relative to 
the baseline), causing the relative price of green to fossil energy to fall further. The 
quantitative impact of the reduced fossil energy innovation on this relative price is 
considerable and clearly captured within this three-sector, directed technical change 
framework.

31 Specifically, Popp (2004) compares the size of the carbon tax necessary to restrict emissions to their 1995 
levels in his model with and without endogenous energy innovation. The difference in the size of the tax is less than 
1 percent. Additionally, he finds that including endogenous energy innovation increases welfare under the optimal 
policy by 9.4 percent. Gerlagh (2008) compares the size of the carbon tax necessary to stabilize the atmospheric 
carbon concentration at 450ppmv. He finds that endogenous innovation reduces the size of the carbon tax necessary 
to achieve this stabilization target by a factor of two. Some of the differences with earlier work could partially result 
from these differences in the simulated emissions and climate targets. 
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Third, the three sectors imply that increased green innovation can crowd out fos-
sil innovation and/or nonenergy innovation. These two dimensions for crowd-out 
have substantially different implications for both the effectiveness and gross welfare 
cost of the carbon tax. Increased green innovation at the expense of fossil inno-
vation amplifies the impact of green innovation on the relative price of green to 
fossil energy, increasing the emissions reduction from the carbon tax. In contrast, 
increased green innovation at the expense of nonenergy innovation could result in 
a larger reduction in economic growth, amplifying the gross welfare costs of the 
policy.32

D. Sensitivity Analysis

I conduct sensitivity analysis across all the model parameters. Specifically, I 
analyze the percent that endogenous innovation reduces the size of the carbon tax 
required to achieve the emissions target for different parameter perturbations. The 
results are particularly sensitive to changes in the diminishing returns to innovation, ​
η​. Weaker diminishing returns (bigger ​η​) increase the amount that agents raise green 
innovation in response to the carbon tax, thus increasing the effect of endogenous 
innovation on the size of the carbon tax.

The results are surprisingly insensitive to changes in the substitution elasticity 
between green energy and the composite comprised of fossil energy and foreign 
oil, ​​ε​e​​​ . All else constant, lower values of ​​ε​e​​​ reduce the shift in demand from fossil 
to green energy in response to the tax. A smaller demand shift leads to a smaller 
change in innovation, decreasing the effects of endogenous innovation on the size of 
the carbon tax. However, the magnitude of this decrease is reasonably small; even if ​​
F ̃ ​​ and ​G​ are almost Cobb-Douglas (​​ε​e​​  =  1.1​), endogenous innovation still reduces 
the size of the carbon tax by 17.4 percent. The reason for this small effect is that 
matching the targeted moments with lower values of ​​ε​e​​​ requires weaker diminishing 
returns to innovation. As the strength of the diminishing returns to innovation falls  
(​η​ approaches unity), the effects of endogenous innovation on the size of the carbon 
tax increase, partially offsetting the decrease from the smaller substitution elasticity. 
Thus, the effects of changes in ​​ε​e​​​ are smaller than one might expect when the model 
is required to match the historical record. Online Appendix F reports the detailed 
results from the sensitivity analysis.

V.  Conclusion

This paper develops a general equilibrium model to quantify the response of tech-
nology, prices, and other macroeconomic aggregates to climate policy. Building on 
the directed technical change literature, I model an economy in which scarce inno-
vation resources can be allocated toward fossil energy, green energy, and nonenergy 
intermediate inputs. I calibrate the model parameters using data from the natural 
experiment on energy prices and innovation from the oil shocks in the first half of 

32 While both types of crowd-out are possible, I find that green energy innovation almost exclusively crowds out 
fossil innovation, and not nonenergy innovation (see Section IVA). 
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the 1970s. I then use this empirically grounded model as a quantitative laboratory in 
which to study climate policy.

A key result is that endogenous innovation amplifies the price incentives created 
by the carbon tax. The tax operates through prices to shift innovation from fossil 
to green energy. This shift in innovation raises green technology compared to the 
baseline balanced growth path, decreasing the green energy price. Similarly, fossil 
innovation falls compared to the baseline balanced growth path, increasing the fos-
sil energy price. These additional price movements reduce the size of the carbon 
tax required to attain a given abatement target. Specifically, endogenous innovation 
lowers the size of the carbon tax necessary to achieve a 30 percent emissions reduc-
tion in 20 years by 19.2 percent.

Overall, the results imply that endogenous innovation has considerable effects on 
climate policy outcomes. Shifts in innovation in response to the carbon tax lower 
the relative price of green to fossil energy by approximately 7 percent in the short 
run and 17 percent in the long run. Moreover, the relative level of green to fossil 
technology stabilizes at approximately two and a half times its value on the baseline 
balanced growth path.
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