STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16\& thereafter)

SUBJECT CODE : 15MT/PE/NC14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2017
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : ELECTIVE
PAPER : NUMBER THEORY AND CRYPTOGRAPHY
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A

ANSWER ALL THE QUESTIONS:

1. In the base 26 , with digits A-Z representing 0-25 multiply YES by No.
2. Prove that $n^{5}-n$ is always divisible by 30 .
3. Find $\left(\frac{168}{11}\right)$.
4. Find the inverse of the matrix $\left(\begin{array}{ll}1 & 3 \\ 4 & 3\end{array}\right) \bmod 5$.
5. Define Euler Pseudo-prime.

SECTION - B

ANSWER ANY FIVE QUESTIONS:
6. Find an upper bound for the number of bit operations required to compute the binomial coefficientnCm.
7. Find the prime factorization of $2^{35}-1$.
8. Let $q=p^{f}$, where p is prime. Show that the splitting field of the polynomial $X^{q}-X$ is a field with q elements.
9. Solve the following system of simultaneous congruence
$2 x+3 y \equiv 1 \bmod 26, \quad 7 x+8 y \equiv 2 \bmod 26$.
10. Write a note on RSA cryptosystem.
11. State and prove the Fermat's Little theorem.
12. Prove that $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p$.

> SECTION - C

ANSWER ANY THREE QUESTIONS:
13. (a) Find an upper bound for the number of bit operations required to compute n !.
(b) Divide $(11001001)_{2}$ by $(100111)_{2}$, and divide (HAPPY) $)_{26}$ by (SAD $)_{26}$
(c) Prove that the g.c.d of two numbers can be expressed as a linear combination of the numbers with integer coefficients and express 7 as a linear combination of 1547 and 560.
($6+6+8$)
14. (a) Find the smallest non-negative solution of the following system of congruence. $\mathrm{x} \equiv 2 \bmod 3 ; \mathrm{x} \equiv 3 \bmod 5 ; \mathrm{x} \equiv 4 \bmod 11 ; \mathrm{x} \equiv 5 \bmod 16$.
(b) Prove $: \sum_{d / n} \varphi(d)=n$.
15. (a) Prove that for any $q=p^{f}$ the polynomial $X^{q}-X$ factors in $F_{p}[x]$ into the product of all monic irreducible polynomials of degrees d dividing f.
(b) Prove with usual notations $G^{2}=(-1)^{(q-1) / 2} q$.
(c) Determine whether 7411 is a quadratic residue modulo the prime 9283 . $(10+5+5)$
16. (a) In a long string of cipher text which was encrypted by means of an affine map in single letter message units in the 26 -letter alphabet, you observe that the most frequently occurring letters are " Y " and " V ", in that order. Assuming that those cipher text message units are the encryption of "E" and "T", respectively, read the message "QAOOYQQEVHEQV".
(b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(Z / N Z)$ and set $D=a d-b c$.

Then prove that the following are equivalent.
(i) g.c.d $(\mathrm{D}, \mathrm{N})=1$
(ii) A has an inverse matrix
(iii) If x and y are not both 0 in $Z / N Z$, then $A\binom{x}{y} \neq\binom{ 0}{0}$;
(iv) A gives a 1-1 correspondence of $(Z / N Z)^{2}$ with itself.
17. (a) Explain the following terms with example.

Authentication, Hash function, Key Exchange, Probabilistic Encryption.
(b) If n is a strong pseudo prime to the base b , then prove that it is an Euler pseudo prime to the base b .

