STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16& thereafter)

SUBJECT CODE: 15MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2017 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE	
PAPER	: GRAPH THEORY	
TIME	: 3 HOURS	MAX. MARKS : 100

SECTION – A

(5 X 2 = 10)

ANSWER ALL THE QUESTIONS

- 1. Define graph isomorphism.
- 2. Define perfect matching and give an example.
- 3. Prove that every critical graph is a block.
- 4. True or false: K_6 is a planar graph.
- 5. Define embedding of a graph.

$\mathbf{SECTION} - \mathbf{B} \tag{}$

(5 X 6 = 30)

ANSWER ANY FIVE QUESTIONS

- 6. Prove that an edge is a cut-edge if and only if it belongs to no cycle.
- 7. State and prove Hall's theorem for bipartite graphs.
- 8. With usual notations prove that $\kappa \leq \kappa' \leq \delta$.
- 9. Prove that in a critical graph no vertex is a cut vertex. Hence prove that every critical graph is a block.
- 10. In any connected plane (p,q) graph $p \ge 3$ prove that $q \le 3p 6$. Hence show that K_5 is not planar.
- 11. State and prove Euler's formula for planar graphs.
- 12. Write three equivalent definitions of de Bruijin digraph. Also draw B(2,3).

SECTION – C $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

13. Write Dijkstra's algorithm. Find shortest path from u_0 to all other vertices using Dijkstra's algorithm for the following graph.

- 14. a) Prove that a matching M in G is a maximum matching iff G contains no M augmenting path.
 - b) Prove that a graph is bipartite if and only if it contains no odd cycle.

(10 + 10)

- 15. a) State and prove Dirac theorem for vertex coloring.b)State and prove Brook's theorem. (10 + 10)
- 16. a) State and prove five colour theorem.b) State and prove Kuratowski's theorem . (7 +13)
- 17. a) Write all the topological properties of Interconnected networks.
 b) Define Circulant network and list its characteristic features. Also draw*G*(12, {±3}) (8+12)
