STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2015-16\& thereafter)

SUBJECT CODE: 15MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2017
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE
PAPER : GRAPH THEORY
TIME : 3 HOURS MAX. MARKS : 100

$$
\text { SECTION - A } \quad(5 \times 2=10)
$$

ANSWER ALL THE QUESTIONS

1. Define graph isomorphism.
2. Define perfect matching and give an example.
3. Prove that every critical graph is a block.
4. True or false: K_{6} is a planar graph.
5. Define embedding of a graph.

> SECTION - B
$(5 \times 6=30)$

ANSWER ANY FIVE QUESTIONS

6. Prove that an edge is a cut-edge if and only if it belongs to no cycle.
7. State and prove Hall's theorem for bipartite graphs.
8. With usual notations prove that $\kappa \leq \kappa^{\prime} \leq \delta$.
9. Prove that in a critical graph no vertex is a cut vertex. Hence prove that every critical graph is a block.
10. In any connected plane (p, q) graph $p \geq 3$ prove that $q \leq 3 p-6$. Hence show that K_{5} is not planar.
11. State and prove Euler's formula for planar graphs.
12. Write three equivalent definitions of de Bruijin digraph. Also draw $B(2,3)$.

SECTION - C

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

13. Write Dijkstra's algorithm. Find shortest path from u_{0} to all other vertices using Dijkstra's algorithm for the following graph.

14. a) Prove that a matching M in G is a maximum matching iff G contains no $M-$ augmenting path.
b) Prove that a graph is bipartite if and only if it contains no odd cycle.

$$
(10+10)
$$

15. a) State and prove Dirac theorem for vertex coloring.
b)State and prove Brook's theorem.
16. a) State and prove five colour theorem.
b) State and prove Kuratowski'stheorem .
17. a) Write all the topological properties of Interconnected networks.
b) Define Circulant network and list its characteristic features. Also draw $G(12,\{ \pm 3\})$

acalacalaa

