STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16 and thereafter)

SUBJECT CODE : 15MT/PC/FD34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2017 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE	
PAPER	: FLUID DYNAMICS	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Define lamellar vector.
- 2. State any one important result in hydrostatics.
- 3. Give an example of an axi-symmetric flow.
- 4. Show that in a 2-dimensional flow the vorticity vector is perpendicular to the plane of flow.
- 5. Write down the tensor form of equation of motion.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

$(5 \times 6 = 30)$

- 6. Show that at all points of the field of flow the equipotentials are cut orthogonally by the stream lines.
- 7. Explain how to measure the fluid velocities using Pitot tube.
- 8. Show that the stream lines lie in planes passing through the axis of the doublet.
- 9. Doublets of strengths $\mu 1, \mu 2$, are situated at points A_1, A_2 whose Cartesian coordinates are $(0, 0, c_1), (0, 0, c_2)$, their axes being directed towards and away from the origin respectively. Find the condition that there is no transport of fluid over the surface of the sphere $x^2 + y^2 + z^2 = c_1c_2$.
- 10. Discuss the flow for which $w = z^2$.
- 11. Find the equations of the streamlines due to uniform line sources of strength m through the points A(-c, 0), B(c, 0) and a uniform line sink of strength 2m through the origin.
- 12. Discuss the steady viscous flow in tubes of uniform cross-section.

 $(3 \times 20 = 60)$

SECTION - C

ANSWER ANY THREE QUESTIONS:

13. (a) Prove that the vortex lines and tubes cannot originate or terminate at internal points in a fluid.

(b) With the usual notation prove that
$$f = \frac{\partial \vec{q}}{\partial t} + \nabla \left(\frac{1}{2}\vec{q}^2\right) - \vec{q}\Lambda(\nabla\Lambda\vec{q}).$$
 (10+ 10)

14. (a) Derive Bernoulli's equation of motion.

(b) Discuss the steady motion of a fluid and the conservative body forces considering the different cases that arise.

(10 + 10)

15. Prove that the velocity potential at a point *P* due to a uniform finite line source *AB* of strength *m* per unit length is of the form $\psi = m \log f$, where

$$f = \frac{r_2 + x_2}{r_1 + x_1} = \frac{r_1 - x_1}{r_2 - x_2} = \frac{a + l}{a - l}$$

- in which AB = 2l, $PA = r_1$, $PB = r_2$, $NA = x_1$, $NB = x_2$, N being the foot of the perpendicular from P on the line AB, and 2a the length of the major axis of the spheroid through P having A, B as foci.
- 16. State and prove the theorem of Blasius and use it to prove that an infinite circular cylinder in a uniform stream with circulation experiences an uplifting force.
- 17. (a) Derive the Navier stokes equation of motion of a viscous fluid.
 - (b) Discuss the steady flow between concentric rotating cylinder. (10 + 10)