SUBJECT CODE : MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2009

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE
 PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
 TIME : 3 HOURS
 SECTION - A

MAX. MARKS : 100

ANSWER ALL QUESTIONS :

($10 \times 2=20$)

1. Define a subspace of a vector space.
2. If V is a vector space over F, then prove $(-\alpha) v=-\alpha v$, for $\alpha \in F, v \in V$.
3. Define a basis of a vector space.
4. Prove that $L(S)$ (Linear Span of S) is a subspace of V.
5. Give an example of an inner product space.
6. Prove that $\|\alpha v\|=|\alpha|\|\nu\|$.
7. Define a regular Linear transformation.
8. Define characteristic of a Linear transformation.
9. Define minimal polynomial of a transformation.
10. Prove that the vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ in $F^{(3)}$ are Linearly independent over F.

SECTION - B

ANSWER ANY FIVE QUESTIONS :

11. If V is the internal direct sum of subspaces U_{1}, \ldots, U_{n} of V, then prove that V is isomorphic to the external direct sum of U_{1}, \ldots, U_{n}.
12. If W_{1} and W_{2} are two subspaces of V, prove that $W_{1} \cap W_{2}$ is a subspace of V.
13. State and prove Schwarz inequality.
14. Define W^{\perp} of a subspace W of V. Prove that W^{\perp} is a subspace of V. Also prove $W \cap W^{\perp}=\{0\}$.
15. Prove that Kernel of a homomorphism is a subspace of a vector space.
16. If V is a finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
17. If V is finite dimensional over F then prove for $S, T \in A(V)$.
(i) $r(S T) \leq r(T)$
(ii) $r(S T)=r(T S)=r(T)$ for S regular in $A(V)$.

SECTION - C

ANSWER ANY TWO QUESTIONS :

($2 \times 20=40$)
18. a) If V is finite dimensional and if W is a subspace of V then prove that
(i) W is finite dimensional and $\operatorname{dim} W \leq \operatorname{dim} V$.
(ii) $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
b) If A and B are finite dimensional subspaces of V, then prove that $(A+B)$ is finite dimensional and $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$
19. State and prove Gram-Schmidt orthogonalization process. And give an example.
20. a) If V is finite dimensional then prove $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
b) If $T \in A(V)$ has all its characteristic roots in F, prove that there exists a basis of V in which the matrix of T is triangular.
$(10+10)$

