STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2004–05 & thereafter)

SUBJECT CODE : MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2009 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR COREPAPER: VECTOR SPACES AND LINEAR TRANSFORMATIONSTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS :

(10 X 2 = 20)

(5 X 8 = 40)

- 1. Define a subspace of a vector space.
- 2. If V is a vector space over F, then prove $(-\alpha)v = -\alpha v$, for $\alpha \in F$, $v \in V$.
- 3. Define a basis of a vector space.
- 4. Prove that L(S) (Linear Span of S) is a subspace of V.
- 5. Give an example of an inner product space.
- 6. Prove that $\|\alpha v\| = |\alpha| \|v\|$.
- 7. Define a regular Linear transformation.
- 8. Define characteristic of a Linear transformation.
- 9. Define minimal polynomial of a transformation.
- 10. Prove that the vectors (1,0,0), (0,1,0) and (0,0,1) in $F^{(3)}$ are Linearly independent over F.

SECTION – B

ANSWER ANY FIVE QUESTIONS :

- 11. If V is the internal direct sum of subspaces $U_1,...,U_n$ of V, then prove that V is isomorphic to the external direct sum of $U_1,...,U_n$.
- 12. If W_1 and W_2 are two subspaces of V, prove that $W_1 \cap W_2$ is a subspace of V.
- 13. State and prove Schwarz inequality.
- 14. Define W^{\perp} of a subspace W of V. Prove that W^{\perp} is a subspace of V. Also prove $W \cap W^{\perp} = \{0\}$.
- 15. Prove that Kernel of a homomorphism is a subspace of a vector space.
- 16. If V is a finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
- 17. If *V* is finite dimensional over *F* then prove for $S, T \in A(V)$.
 - (i) $r(ST) \le r(T)$
 - (ii) r(ST) = r(TS) = r(T) for S regular in A(V).

SECTION – C

ANSWER ANY TWO QUESTIONS :

- 18. a) If V is finite dimensional and if W is a subspace of V then prove that (i) W is finite dimensional and dim $W \le \dim V$. (ii) dim $\frac{V}{W} = \dim V - \dim W$.
 - b) If A and B are finite dimensional subspaces of V, then prove that (A + B) is finite dimensional and $\dim(A + B) = \dim A + \dim B \dim(A \cap B)$

(12+8)

- 19. State and prove Gram-Schmidt orthogonalization process. And give an example. (12+8)
- 20. a) If *V* is finite dimensional then prove $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for *T* is not zero.
 - b) If $T \in A(V)$ has all its characteristic roots in F, prove that there exists a basis of V in which the matrix of T is triangular. (10+10)

(2 X 20 = 40)