
STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 

(For candidates admitted from the academic year 2004-05 & thereafter) 

 

SUBJECT CODE : MT/MC/LS44 

B. Sc. DEGREE EXAMINATION, APRIL 2009 

BRANCH I – MATHEMATICS   

FOURTH SEMESTER 

COURSE  :   MAJOR CORE 

PAPER     :   LAPLACE TRANSFORMS, SEQUENCES AND SERIES 

TIME       :   3 HOURS             MAX.  MARKS :  100 

 

SECTION – A 

ANSWER ALL QUESTIONS:                  (10 X 2 = 20) 
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4. Find the Laplace transform of 
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5. Find oa  of the Fourier series for cxf =)(  in the range 0  to π2 . 

6. State the least upper bound axiom. 

7. Give an example of bounded set A  of R  whose glb and lub are both in AR −  . 

8. If the sequence of real numbers { }∞

=1nns  is convergent then prove that { }∞

=1nns  is 

bounded. 

9. If  ∑
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=1n

na  is a convergent series then prove that 0lim =
∞→

n
n

a . 

10. State the ratio test for a series of real numbers. 

 

 

SECTION – B 

ANSWER ANY FIVE QUESTIONS:                                        (5 X 8 = 40) 

 

11. Find 
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13. Show that in the range π− to π , x
e  as a Fourier series is 
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14. Prove that every Cauchy sequence is convergent. 

15. Prove that if { }∞

=1nns  converges it cannot have more than one limit. 

16. (i)  If 10 << x  then prove that ∑
∞

=0n

n
x  converges to 
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x−
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(ii)  If 1≥x  then prove that ∑
∞
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n
x  diverges. 
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SECTION – C 

 

ANSWER ANY TWO QUESTIONS:                             (2 X 20= 40) 

 

18. a)  If { }∞

=1nna  is a sequence of positive numbers such that  

(i)  ....... 121 ≥≥≥≥≥ +nn aaaa  and 

           (ii)  0lim =
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a  then prove that the alternating series ∑
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a  is convergent. 

       b)  State and prove nested-interval theorem. 

 

 

19. a)  Solve the differential equation ty
dt
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 with the  

conditions 1)0(,0)0( =′= yy .       
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20. A function )(xf  is defined within the range ( )π2,0  by the relations 
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Express )(xf as a Fourier series in the range ( )π2,0 .  Deduce that 
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