STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI $-600\,086$. (For candidates admitted during the academic year 2015-2016 and thereafter)

MAJOR - CORE

SOLID STATE PHYSICS

COURSE PAPER

:

SUBJECT CODE :15PH/MC/SS54 B.Sc. DEGREE EXAMINATION NOVEMBER 2017 BRANCH III - PHYSICS FIFTH SEMESTER

TIME	:	SECTION – A			MAX. MARKS :100		
ANSWER ALL QU		ECTIONS.	SECT	ION –	A	(20 _v 1_20)	
Choose the	_					(30x1=30)	
0110000 0110	0011000						
1. Bond stre	ength of s	econdary bonds	is in the	range o	of		
(a) 1 kJ/n		(b) 10 kJ/mol	,	*	kJ/mol	(d) 1000 kJ/mol	
	ed matter	physics largely	considers	physic	cal processes	over what range of	
energies?							
` ' •		(b) meV to ke	,	c) keV	to MeV	(d) MeV to GeV	
		re brittle and har			1 . 11.1	(1) (11) 11 1	
(a) Ionic		(b) molecular	,	c) cova	lent solid	(d) metallic solid	
	•	ly stable defects		(a) C	food defeats	(d) Walnung dafaata	
` '		(b) Line defection	is ((c) Sur	face defects	(d) Volume defects	
5. Burger's vector changes with				(b) Langth of dislocation			
(a) Kind of dislocation(c) Both kind and length of dislocation				(b) Length of dislocation(d) None			
` ′		· ·		(a) Noi	ie		
_	2	rgies are in the r	2		2	2	
(a) 0.01-0		(b) 0.01-0.1 J/	`	,	10 J/m	(d) $0.1-10 \text{ J/m}$	
7. Which of	the follo	wing is not an a	ssumption	n in Dr	ude-Lorentz	theory of free electrons?	
(a) Metal	s contain	free electrons th	at move	throug	h a lattice of 1	positive ions.	
(b) Electr	ric field p	roduced by lattic	ce ions is	consid	lered to be un	iform throughout the solic	
and hence n	eglected.						
(c) Free e	electrons	in a metal resem	ble mole	cules o	f a gas and th	erefore the laws of kinetic	
		pplicable to free					
					evels accordin	ng to Pauli's exclusion	
principle.	 			018) 10	, , 015 000 01 011	.8 vo 1 www 2 viviwaren	
	tivity of t	ha matarial dana	nda on w	hich o	f the followin		
	•	he material depe				-	
` ,		conductor	•	ŕ		tion of the conductor	
(c) Temp			(d) All th				
9. The quan	tized vib	rations of lattice	points in	a solic	l are called		
(a) Photo	ns	(b) Phonons	(0	c) Prot	ons	(d) Partons	
10. Typical	thickness	s of Bloch walls	(nm).			
(a) 0.1-1		(b) 1-10	(c) 10-5	0	(d) 100		

11.Example for para-magnetic materials						
(a) super conductors (b) alkali metals (c) transition metals (d) Ferrites						
12.Example for magnetic material used in data storage devices						
(a) Permalloy (b) CrO ₂ (c) Cunife (d) Alnico						
13. In superconductivity the conductivity of a material becomes						
(a) Zero (b) Finite (c) Infinite (d) None of the above						
14. The magnetic lines of force cannot penetrate the body of a superconductor, a phenomenon						
is known as						
(a). Isotopic effect (b)BCS theory (c)Meissner effect (d)London theory						
15. There are three important lengths which enter the theory of superconductivity except						
(a). London penetration length (b)Intrinsic coherence length						
(c) Normal electron mean free length (d)Mean path length						
Fill in the blanks:						
16. The major binding force in graphite is						
17. Negative screw dislocation is represented by						
18. Electrical conductivity of insulators is the range						
19. Typical size of magnetic domains						
20. The energy required to break a cooper pair is of the energy gap of superconductor.						
State whether the following statements are true or false:						
21. Ionic bond is not a strong bond						
22. Line defects are thermodynamically stable						
3. When an electric field is applied to the metal, the free electrons are accelerated and						
they move in theopposite direction of applied electric field.						
24. Ferromagnetic materials does not exhibit magnetization even in the absence of magnetic field.						
5. Cryotron is a magnetically operated current switch.						
Answer briefly:						
26. What type of bonding do freshwater fish need to be thankful for?						
27. What is a Schottky defect more commonly known as?						

- 28. Give an expression for Hall co-efficient.
 29. What is meant by transition (or) critical temperature?
 30. What is meant by persistant current?

SECTION - B

Answer any Five Questions:

5x5=25

- 31. If 440 x 10³ kJ of energy is required to break the H-H bonds in a K mol, Compute the energy required in eV to break one H-H bond.
- 32. What is Schottky and Frenkeldefet?
- 33. Calculate the electrical and thermal conductivities of a metal with the relaxation time of 10-14 second at 300 K. The electron density is $6x10^{26}$ m⁻³
- 34. The Hall coefficient and conductivity of Cu at 300 K have measured to be -0.55 x 10⁻¹⁰ m³ A⁻¹ s⁻¹ and 5.9 x 10⁷ mho per mtere, respectively. Calculate the drift mobility of electrons in copper.
- 35. Define hysteresis. What is meant by hysteresis loop and What do you infer from it?
- 36. The critical temperature for Hg with isotopic mass 199.5 at 4.184 K. Calculate the critical temperature when its mass changes to 203.4.
- 37. What are cooper pairs? Explain it.

SECTION - C

Answer any Three Questions:

3x15=45

- 38. What is meant by bonding in solids? Explain the different types of bonds formed in the case of solids with suitaple examples.
- 39. Explain different types of crystal imperfection with neat sketches.
- 40. Deduce mathematical expression for electrical conductivity and thermal conductivity of a conducting material and hence obtain Wiedemann-Franz law.
- 41. Discuss the domain structure in ferromagnetic materials. Show how the hysteresis curve is explained on the basis of domain theory.
- 42. What is Meissner effect? Prove that all superconductors are perfect dia-magnet in superconducting state.
