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The study of superharmonic functions is closely related
to the study of analytic functions in the complex plane,mainly
because, for an analytic function f .in € , log {1/ ||} is
mﬁrhamanie. ‘Otir purpase’ in this thesis is to discuss the

superharmonic. analogues.of vsomesresults on:anglytic: functions,
o “Phe éxtensions’ from analytic’ funct {els’ €6 superharmonic
funttions are gonsiBiéred in three differait’ stages fiem
analytic functions in ¢ to superhaimonic-functions in w2,
then from superharmonic Itmctions in ]R2 to superharmonic
functions in R? (n > '3) and finally from R" and Riemenn surfaces
to the axiomatic harmonic spaces. The need to deal with the |

cases corresponding to r?

end R® (n > 3) separately, arises
owing to the fundamental difference in the harmonic structures
of ]Rzarid R? (n > 3). The analogues in the axiomatic case,
which are of more general nature, are obtained after careful
considerations, since many of the simple results in ;]Rn are not

easily available in harmonic spaces.

‘Some interesting notions connected with analytic¢ functions,
the analogues of which we consider, in our studies with. respec!:
td,supezhamonic functions are : order, réuvmber} of zeros, canonical
devc‘ox;;pésitj.)on, Green functions and analytic maps from a Riemenn

-surface into another,
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CHAPTER T : MINIMAL THEOREMS FOR THE HARMONIC-MORPHISM

The theory of 'analytic maps',‘we know, plays a key role
in determining the geometric properties of analytic functions
in the complex plane, These analytic maps have also been studied
in the context of Riemann surfaces in detail. In fact, the study
of analytic maps have been extended (C,Constantinescu and
| A,Cornea [11]) to more comprehensive structures which afe defined
by means of a sheaf of continuous functions on topological spaces,
possessing the main‘properties of the sheaf of harmonic’functians
on a Riemann surface. This leads to the notion of harmonic-
morphiéms (also‘referred tb as harmonic maps) between harmonic

spaces.

In this chapter, we study the action of harmonic-morphisms
on certain types of positive harmonic functions, The underly;ng

space of our study is a B.P, harmonic.space, denoted by N..

Imitating the developments in the theory of Riemann surfaces,
(M.Heins [22]) we first characterise Bl-harmonic-morphisms using
singular harmonic functions. In these characterisations, we make
use of the ‘'ypper limit functions! associated with subharmonic
functions, which we introduce, also deriving a few of their

properties,

The key theorems of the chapter can be classified under

what we call as 'minimal theorems!. Such theorems in the



W

classical case have been discussed by M,Heins [25]. Let

9 g ;;312 be a harmonic-morphism and u be é'real valued
function in Itl. We denote by Fu, a class of real valued
functions s in”:Lz_satisfying u<sog. The minimal theorems
consist in investigating the nature of the infimum ofiﬁhe family

F*, under restrictions placed on u, F and the map¢ .

CHAPTER II : TWO APPLICATIONS OF THE ADJOINT HARMONIC SHEAF

- The properties of the Green functions in a bounded domain
in R™ and in Green spaces (M,Brelot [10]) are extensively used
to obtain many of the well known results involving harmonic and
superharmonic functions in such spaces, Is it possible to 1ift
these functions to the axiomatic case? In fact the potentials
in B.P, spaces with point support, mostly come up to our
expectations, but with symmetry lacking in them. To compromise
for the noanymmetry of these functions, we go over to the adjoint

‘harmonic sheaf.

In this chapter, we illustrate, by considering two problems,
how potentials with point support in B,P. spaces and in the
adjoint sheaves successfully léad to generalisations of some

known results in the classical theory.

The first problem we cansider, is a characterisation of
regular points for the Dirichlet problem in B.,P., spaces., Tl
Dirichlet problem, which is one of the earliest boundary value
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problems in Analysis, has played an important role in the whole
development of Pctential Theory. Its classical fermuleation is
well known. 'Given a continuous function on the boundary of an
open set, to find a harmonic function tending to the prescribed |
boundary condition at every point , Since the problem posed

in the above manner was not always solvable, it was thought in
the earlier part of the century that the study of the Dirichlet
problem should be divided into two steps. First to assign in a
good way a harmonic function hf to the boundary data £ and then
to investigate the boundary behaviour of hf and compare the
result with values of £, This led to the notion of the
generalised Dirichlet problem and points of the boundary were
classified as regular and irregular, depending upon the well
behaviour of the Dirichlet solution at these points,

There have been various characterisations given for the
regular points of the Dirichlet problem, for example in terms .
of barriér_functions, thinness of the complement, (M.Brelot )]
and recently using Keldysch operators. (Netuka, [34]). In our
discussions, we intend giving a characterisation for regularity
in terms of the quasi-boundedness of the po@tential with point
support in the adjoinﬁ harmonic sheaf, In the special case of
self-adjoint harmonic spaces, this essentially reduces to
quasi-boundedness of the potentials with pointlsupport in the

space under consideration,
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The second problem we consider, deals with the existence of
harmonic majorants for subharmonic functions, It is known that
(Gauthier and Hergartner [13]) if u is subhérmonic in the open
unit disc in R and if each point of the unit circle has a
neighbourhood on which u has a harmonié majerant, theén u has
a (global) harmenic majorant in thé disc, It is essential in
such a theorem, to consider boundary points, for, every
subharmonic fuhction haes a lcocal harmonic majorent in the

neighbourhood of every interior point, and of course, many

subharmonic functions do not have global harmonic majorants,

, A
In the axiomatic case, the Martin compactification L of a
B.P.- space L. , called the 'Martin space', behaves like the unit

disc in RZ

s In considerations regarding harmonic functions. It
is but natural therefore, to anticipate a relationship between
the existence of iocal harmonic majorants in neighbourhoods of
Martin-boundary points and the existence of global harmonic
majorants, for subharmonic functions in B.P, spaces, We prove
that in a Martin space which is also locally connected at the
boundary and with every boundary point minimal, every subharmonic
function with the local harmonic majorant propeity in £, has a
global harmonic majorant. Recalling that a harmonic function u
belongs to the Hardy class hP, (0 < p < « ), (L.Lumer, [32]) if
|u |P admits a harmonic majorant, we also make the following
interesting deduction that in a Martin space with the above
mentioned additional conditions, a harmonic function is globally
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in a Hardy»class if and only if it is locally in the same Hardy

"classe.

CHAPTER III : SUPERHARMONIC EXTENSIONS AND FLUX AT INFINITY

In this chapter, our underlying space of study is a B.S.

harmnrnic space L .

The measure associated with a superharmonic function, is

-~ the counterpart of the number of zercs of an analytic function

in C, Special interest arises, with superharmonic functions,
whose associated total measure is finite, In B,S. harmonic
spaces, these functions correspond to.the admissible superharmonic

functions, which have their flux at infinity, finite,

'Flux at infinity', is a notion that generalises the concept
of finite total measure associated with a superharmonic function,
in the classical case, and is closely related to questions

concerning the extensions of superharmonic functions.

In the theory of superharmonic extensions, we often
encounter the following basic theorem, that leads to the
definition of flux at infinity., " Given a superharmonic functlon
u in a domain, in a B,S. spaceJd)k, with compact support K, and
a harmonic function h outside a compact set, there exists a
~ function s .in.n., harmonic outside K, such that s = Au +
a harmonic function in a neighbourhood of K,' for some constant A

énd s-h is bounded outside a compact set in A" ,
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The proof of the above theorem, (V.Anandam [1]) has, as
ité key note, the existence of a solution of the equation
(1-T)g = f, where £ and g € C(3 X) for a suitably chosen relatively
campact set X infiand T is a nomal operator on C(3X). (See
Preliminaries A). 1In B.P. spaces it is known thet (Rodin and
Sario [43]) the above cquation always has a soluticn for every
feC(agX)., But this is not the case with 3,S. spaces, In
these spaces the ebove equaticn has a solution if and oniy if
;ff dv = 0, where ) is a unique Radon measure on C( 3 X) determined
byfddD = [Tp a® , for every ¢ 6C( 3X). The above result on
the cxistence Qf the Radon measure is known as 'Nakai's lemma',
the proof of which entirel& depends upon the Riesz~Schauder
theory of operators. One undepstands from the above cited
results, that the extension problems in B,S. spaces are not so

easy to handle with, as in the case of B.P. spaces.

The discussions initiated by V.Anandam [1] using Nakai's
results are.thus essentially based upon the Riesz-Schauder theory
of operators. Attempts have been made to providé solutions to
the above theorem and allied ones, without applying Riesz-
Schauder theory. In fact, Anandam [3] has given direct proofs
for theorems on superharmonic extensions, in harmonic spaces of
dimension one, Guillerme, [19] has proved an extension theorem
for harmonic functions defined outside a compact set, without
" making use of Riesz-Schauder thedry. Guessous, [L7] has

considered both the cases of extensions from inside and outside
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without any operator theorv,

In this chepter, we prove the above mentioned thecrem
using only botential thecretic techniques, thus climinating
Riesz~Schauder thecory completely, and deduce a few other related
results, We mainly use the concept of 'specific majorisation!
~and the propertiés of 'Specific reduced functions' in the course
of our proofs. Also, we indicad how our results lead t6 the

definition of flux at infinity.

| CHAPTER IV : GENERALISED CL/LSSICAL KERNELS IN HALF~SPACES :

Lis indicated earlier, this chapter is devoted to discussions

in the classical case,

It is known that given a Radon meaéure‘}k> 0 in IRn3 there
exists a superhafmonic function u whose associated measure in
the local representation is,ﬁk' Though in general, nothing more
precise, can be said about u thus obtained, when}.kié
Testricted in some sense, then u assumes nice propefties. The
restrictions on the measure lead to the notion of genus and
correspondingly, superharmonic functions with finite genus,
admit intégral representations in terms of canonical potentials
and harmonic functions; The kernels involved in the canonical
potentials are referred to as the generalised kernelé. (See
V.fnandam and M,Brelot [4], W.K.Hayman [21] and Premalatha
- and V,Anandam [37]).
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How do the above results modify in half-spaces D" in }Pb

It turns out that cne has to consider two sets of kernels, called
generalised superharmonic kernels and generalised Poisson kernmels,
in the integral representation of superharmcnic functions in Dn.
These kernels have been considered by D.H,Armitage [5],'[6], in

thie context of integral representations,

In this chapter, we supplenent Armithge's results, giving
conditions for the existence of generalised potentials, and
generalised hammonic functions, in terms of the given superharmonic
function and its associated measure. Imitating, the developments
in the study of superharmonic functions in Rp, we define the
;order of a superharmonic function, the genus and convergence
exponent of the associated measure /A,in the half-space o°
and obtain inequalities connecting them. Also, we interpret
the integral representation theorem of Lrmitage, as the
superharmonic version of the 'Hadamard theorem! involving the
order and genus. We end the chapter by briefly indicating
how some of the integral representationsih.half-sﬁaéelwcan

be carried over to wedges in RY and in particular, wedges'in 112.

CHAPTER V : GROWTH OF SUPERHARMONIC FUNCTIONS IN I@

The order of a superharmonic function u and the exponent
of convergence of its associated measure f* are mainly introduced
- with a view to study the behaviour of the function and the

measure near the point at infinity. However the growth of u
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near the point at infinity is not fully independent of thec growth
oi‘ﬁ;. We assert this, in this small chapter, for superharmonic
functions of non-integral order, by establishing that u is of
regular growth if and only if/d,is of regular growth., As it
usually happens, perharmonic functions of integral order

pose some difficulties, in obtaining a regult of the above type
for them, However, we arc able to guess that at least in the
case g = A= 1, the regular grewth for u necd not be a conseguence

of the regular growth for‘/k.



PART A

DISCUSSION IN AXIOMATIC HARMONIC SPACES
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Here, we recall briefly, the fundemental axioms of the
axiomatic theory snd certain results we use in our discussions,
The details are to be found in M.Brclot [9], Mae.lcrve [26]

and V.linandam [1].

Let N be a locally compact, non-compacy, connected and
locally connected Hausdorff space, To each open set in N, is
assigned a vector space of finite continuous real valued functions

called, ' harmonic functions! on this set.

In open set VC L isg called régular, if it is non-empty,
relatively compact and for every finite continuous function £
on the boundary 3V of V, there exists a unique harmonic
, function'H\i’. on V such that H¥ tends to £ at each point of the

A

boundary and £ > O implies that Hp > O, For any x €V, the

functional f —=> H¥.(X) is a non-negative Radon measure fXV on

0V, called the harmmonic measure relative to V and x,.

We assume that the system of harmonic functions on )

satisfies the following 3 axioms of M.Brelot,

Axiom 1 : The harmonic functions have the sheaf property.

Axiom 2 :.0. has a base consisting of connected regular open sets.

Axiom 3 : The upper envelope of an increasing family of harmonic

functions is either identically infinite or is harmonic,

We also assume that the constants are harmonic infi.. We call fl





