STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-16)

SUBJECT CODE : 15PH/MC/MP44

B.Sc. DEGREE EXAMINATION APRIL 2017 BRANCH III - PHYSICS FOURTH SEMESTER REG. No._____

COURSE : PAPER : TIME :		MAJOR CODE	KEG. NU	KEG. NO				
		MAJOR – CORE MATHEMATICAL PHYSICS 30 MINS.		MAX. MARKS : 30				
TO BE ANSWERED ON THE QUESTION PAPER ITSELF								
$\begin{array}{c} \text{SECTION} - \text{A} \\ \text{ANSWER ALL QUESTIONS:} \end{array} \tag{30 x 1 = 30}$								
Ι	Choose the Corr	ect Answer:						
1.		owing is a scalar point function (b) Gravitational field	n? (c) Electric field	(d) Magnetic field				
2.	The evaluation of (a) $nr^{n-1}r$		(c) <i>nr</i> ^{<i>n</i>-3} <i>r</i>	(d) <i>nrⁿr</i>				
3.	If $r = a\cos \omega t + (a) - \omega^2 (a \times b)$	b sin ωt , then $r \times \frac{dr}{dt}$ is, (b) $\omega(a^2 \times b^2)$	(c) $\omega(a \times b)$	(d) $\omega^2(a \cdot b)$				
4.	The value of $\nabla(e^{2})$ (a) 0	 <i>r</i>)<i>e</i>, if <i>e</i> is a unit vector, (b) 2 	(c) -1	(d) 1				
5.	u, v and w are por (a) Three	int functions and $uv = \nabla \omega$, the (b) Two	en <i>v · curlv</i> is, (c) One	(d) Zero				
6.	The gradient of ((a) Zero	$a \cdot r$) if $a = \alpha xi + \beta yj + \gamma zk$ (b) -a	is equal to, (c) 2 <i>a</i>	(d) <i>a</i>				
7.	•	the force is represented by (b) $F \cdot dr$	(c) <i>φdr</i>	(d) Adr				
8.		s said to be conservative if the	ere exists a scalar poir	It function φ such that A				
	is equal to (a) grad φ	(b) $\operatorname{curl} \varphi$	(c) grad curl φ	(d) div grad φ				
9.	The condition for (a) div <i>F</i> =0	an irrotational vector <i>F</i> is, (b) grad curl <i>F</i> =0	(c) grad div <i>F</i> =0	(d) $\operatorname{curl} F=0$				

- 15PH/MC/MP44
- 10. The solution of the differential equation $\frac{dy}{dx} = x + xy$ is, (a) $Ae^{\frac{x^2}{2}}$ (b) $Ae^{\frac{x^3}{2}}$ (c) $Ae^{\frac{x}{2}}$ (d) $Ae^{\frac{x^2}{2}}$

121

11. A differential equation is of the form $\frac{d^2y}{dx^2} + p_1\frac{dy}{dx} + p_2y = X$ where p_1, p_2 are constants and X is a function of x. The complementary function, if the roots are of the type $\alpha \pm \sqrt{\beta}$, is (a) $C_1 e^{\alpha x} \cosh \frac{\beta x}{\beta x} + C_2$ (b) $C_1 e^{\beta x} \cosh \frac{\alpha x}{\alpha x} + C_2$ (c) $C_1 e^{\alpha x} \sinh \frac{\beta x}{\beta x} + C_2$ (d) $C_1 e^{\beta x} \sinh \frac{\alpha x}{\alpha x} + C_2$

12. Which of the following is linear differential equation?

(a) $ydx - xdy = xydx$	(b) $a + y dy = (x - y)dy$
(c) $\frac{dy}{dx} + 3y = e^{2x}$	(d) None of these

- 13. The order of the identity element of a group is, (a) 1 (b) 2 (c) 3 (d) 4
- 14. All members of the group can be generated from just one element, such a group is, (a) subgroup (b) cyclic group (c) Non-Abelian group (d) finite group
- 15. For a body of finite extension, only ______ symmetry group of a finite body must leave at least one point of the body fixed (a) one (b) two (c) three (d) four

II Fill in the blanks:

- 16. The magnitude of grad ϕ at any point is the rate of change of function ϕ with ______ along the normal to the level surface at the point.
- 17. The fields of the class, where curl V = 0 and div $V \neq 0$ satisfies_____
- 18. A theorem which states that 'the flux of $\nabla \times A$ over surface *S* of any shape is equal to the line integral of *A* over the boundary of surface, is ______.

19. The order of differential equation, $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$ is_____.

20. Two groups G = (E, A, B, C,) and S = (I, a, b, c,) are of the same order g. these two groups are said to be ______ if there exists one-to-one correspondence between their elements.

III State whether True or false:

- 21. A scalar potential function f(x) is continuous at a point $x = x_0$ if f(x) is not defined.
- 22. If the divergence of a vector is zero, then the vector is called solenoidal vector.
- 23. The integral point function along a curve is called line integral.
- 24. A function defining y as a function of x in the form $f(x, y) \neq 0$ is said to be an implicit function.
- 25. Every subgroup of an infinite cyclic group is infinite.

15PH/MC/MP44

IV Answer briefly:

26. What does the product $a + b \cdot (a - b)$ mean in the case $a^2 - b^2$?

- 27. Find the value of $\int_{2}^{3} \frac{dr}{dt} dt$ if r = 2i j + 2k when t=2 and r = 4i 2j + 3k when t=3.
- 28. Show that $r^n \cdot r$ is an irrotational.

29. Solve the equation $\frac{dy}{dx} - e^{2x} = 0$.

30. State Lagrange's theorem.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-16)

SUBJECT CODE : 15PH/MC/MP44

B.Sc. DEGREE EXAMINATION APRIL 2017 BRANCH III - PHYSICS FOURTH SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	MATHEMATICAL PHYSICS	
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS : '

SECTION – B

Answer any FIVE of the following:

 $(5 \times 5 = 25)$

70

- 1. A proton is moving with velocity 10^5 m/s along Z-axis in an electric field of intensity 5×10^4 V along X-axis and magnetic field of intensity 0.4 Tesla along Y-axis. Calculate the magnitude and direction of total force.
- 2. Find $v \cdot \nabla \times u$ if $u = yz^2i 3xz^2j + 2xyzk$ and v = 3xi + 4zj xyk.
- 3. What are Laplace's equations? Give an account on their applications.
- 4. A resistance R and a 2μ F capacitor are connected in series with 200 V direct supply. Across the capacitor, a neon lamp that strikes at 120 V. Calculate the value of R to make the lamp strike 5s after switch is closed.
- 5. What are symmetry elements? Explain the formation of a group of symmetry with an example.
- 6. Explain the finding procedure of particular integral and complementary function for a differential equation, $\frac{d^2y}{dx^2} + a_1\frac{dy}{dx} + a_2y = f$. Discuss the different cases of complementary function.
- 7. Find the workdone in moving a particle in the force field $F = 3x^2i + 2xz y j + 2k$ along the curve defined by $x^2=4y$ and $3x^2=8z$ from x=0 and x=2.

SECTION – C

Answer any THREE of the following:

- 8. (a) The charges and coordinates of two charged particles held fixed in the X-Y plane are q₁ = 3 μC , x₁ = 3.5 cm , y₁ = 0.5 cm and q₂ = -4 μC , x₂ = -2 cm, y₂ = 1.5 cm. Find the magnitude and direction of the electric force on q₂. (4)
 - (b) Calculate the force acting on the proton in a magnetic field of intensity 0.02 tesla directed along Z-axis when the proton moves with velocity 10⁸ m/s along X-axis. (4)
 - (c) The acceleration of a particle at time $t \ge 0$ is given by $a = t^2i + 2tj + t^3k$. If the velocity v and the displacement r be zero at t = 0, find the velocity and displacement at any time. (7)

9. (a) Show that *E* and *H* satisfy
$$\nabla^2 u = \frac{\partial^2 u}{\partial t^2}$$
, if $\nabla \cdot E = 0$, $\nabla \cdot H = 0$, $\nabla \times E = 0$,
and $\nabla \times H = \frac{\partial E}{\partial t}$. (5)

(b) Show that the solutions to the Maxwell's equations are $E = -\nabla \varphi - \frac{1}{c} \frac{\partial E}{\partial t}$ and $H = \nabla \times A$, where A and φ are the vector and scalar potentials respectively, satisfy the equations

(i)
$$\nabla \cdot A + \frac{1}{c} \frac{\partial \varphi}{\partial t} = 0$$
 (ii) $\nabla^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = 4\pi\rho$ (iii) $\nabla^2 A = \frac{\partial^2 A}{\partial t^2}$ (10)

- 10. (a) Obtain Poisson's equation in electrostatics from Gauss's law. What form does it take when the charge density is zero? (10)
 - (b) Show that the potential can't have a maximum or minimum value at any point in space that is not occupied by an electric charge.(5)
- 11. (a) A spring with mass of 4 kg has natural length 1 m. A force of 25 N is applied and stretched the spring to a length of 1.5 m. If it is released with initial velocity v = 0, find the position of mass at any time t. (10)
 - (b) A body is propelled straight up with an initial velocity of 500 m/s without air resistance. How long will it take the body to return the ground? Assume that the acceleration due to gravity, $g = 10 \text{ m/s}^2$. (5)
- 12. (a) How is group theory applied in IR and Raman active vibrations? Explain with an example. (10)
 (b) Write a short note on SU(2) scheme. (5)

$$(3x15 = 45)$$