(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15PH/MC/MP44

B.Sc. DEGREE EXAMINATION APRIL 2017

BRANCH III - PHYSICS FOURTH SEMESTER

REG. No.

COURSE	$:$	MAJOR - CORE
PAPER	$:$	MATHEMATICAL PHYSICS
TIME	$:$	30 MINS.

TO BE ANSWERED ON THE QUESTION PAPER ITSELF SECTION - A

ANSWER ALL QUESTIONS:

$(30 \times 1=30)$
I Choose the Correct Answer:

1. Which of the following is a scalar point function?
(a) Density
(b) Gravitational field
(c) Electric field
(d) Magnetic field
2. The evaluation of ∇r^{n} is,
(a) $n r^{n-1} r$
(b) $n r^{n-2} r$
(c) $n r^{n-3} r$
(d) $n r^{n} r$
3. If $\mathrm{r}=\operatorname{acos} \omega t+b \sin \omega t$, then $r \times \frac{d r}{d t}$ is,
(a) $-\omega^{2}(a \times b)$
(b) $\omega\left(a^{2} \times b^{2}\right)$
(c) $\omega(a \times b)$
(d) $\omega^{2}(a \cdot b)$
4. The value of $\nabla(e \cdot r) e$, if e is a unit vector,
(a) 0
(b) 2
(c) -1
(d) 1
5. u, v and w are point functions and $u v=\nabla \omega$, then $v \cdot c u r l v$ is,
(a) Three
(b) Two
(c) One
(d) Zero
6. The gradient of $(a \cdot r)$ if $a=\alpha x i+\beta y j+\gamma z k$ is equal to,
(a) Zero
(b) $-a$
(c) $2 a$
(d) a
7. The workdone by the force is represented by
(a) $F \times d r$
(b) $F \cdot d r$
(c) $\varphi d r$
(d) $A d r$
8. A vector field \mathbf{A} is said to be conservative if there exists a scalar point function φ such that \mathbf{A} is equal to
(a) $\operatorname{grad} \varphi$
(b) $\operatorname{curl} \varphi$
(c) $\operatorname{grad} \operatorname{curl} \varphi$
(d) $\operatorname{div} \operatorname{grad} \varphi$
9. The condition for an irrotational vector F is,
(a) $\operatorname{div} F=0$
(b) $\operatorname{grad} \operatorname{curl} F=0$
(c) $\operatorname{grad} \operatorname{div} F=0$
(d) $\operatorname{curl} F=0$
10. The solution of the differential equation $\frac{d y}{d x}=x+x y$ is,
(a) $A e^{-\frac{x^{2}}{2}}$
(b) $A e^{\frac{x^{3}}{2}}$
(c) $A e^{\frac{x}{2}}$
(d) $A e^{\frac{x^{2}}{2}}$
11. A differential equation is of the form $\frac{d^{2} y}{d x^{2}}+p_{1} \frac{d y}{d x}+p_{2} y=X$ where p_{1}, p_{2} are constants and X is a function of x. The complementary function, if the roots are of the type $\alpha \pm \sqrt{ } \beta$, is
(a) $C_{1} e^{\alpha x} \cosh \overline{\beta x}+C_{2}$
(b) $C_{1} e^{\beta x} \cosh \overline{\alpha x}+C_{2}$
(c) $C_{1} e^{\alpha x} \sinh \overline{\beta x}+C_{2}$
(d) $C_{1} e^{\beta x} \sinh \quad \overline{\alpha x}+C_{2}$
12. Which of the following is linear differential equation?
(a) $y d x-x d y=x y d x$
(b) $a+y d y=(x-y) d y$
(c) $\frac{d y}{d x}+3 y=e^{2 x}$
(d) None of these
13. The order of the identity element of a group is,
(a) 1
(b) 2
(c) 3
(d) 4
14. All members of the group can be generated from just one element, such a group is,
(a) subgroup
(b) cyclic group
(c) Non-Abelian group
(d) finite group
15. For a body of finite extension, only \qquad symmetry group of a finite body must leave at least one point of the body fixed
(a) one
(b) two
(c) three
(d) four

II Fill in the blanks:

16. The magnitude of $\operatorname{grad} \varphi$ at any point is the rate of change of function φ with
\qquad along the normal to the level surface at the point.
17. The fields of the class, where curl $V=0$ and div $V \neq 0$ satisfies \qquad .
18. A theorem which states that 'the flux of $\nabla \times A$ over surface S of any shape is equal to the line integral of A over the boundary of surface, is \qquad -.
19. The order of differential equation, $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$ is \qquad .
20. Two groups $G=(E, A, B, C, \ldots .$.$) and S=(I, a, b, c, \ldots .$.$) are of the same order g$. these two groups are said to be \qquad if there exists one-to-one correspondence between their elements.

III State whether True or false:

21. A scalar potential function $f(x)$ is continuous at a point $x=x_{0}$ if $f(x)$ is not defined.
22. If the divergence of a vector is zero, then the vector is called solenoidal vector.
23. The integral point function along a curve is called line integral.
24. A function defining y as a function of x in the form $f(x, y) \neq 0$ is said to be an implicit function.
25. Every subgroup of an infinite cyclic group is infinite.

IV Answer briefly:

26. What does the product $a+b \cdot(a-b)$ mean in the case $a^{2}-b^{2}$?
27. Find the value of ${ }_{2}^{3} \frac{d r}{d t} d t$ if $r t=2 i-j+2 k$ when $t=2$ and $r t=4 i-2 j+3 k$ when $t=3$.
28. Show that $r^{n} \cdot r$ is an irrotational.
29. Solve the equation $\frac{d y}{d x}-e^{2 x}=0$.
30. State Lagrange's theorem.

acacacalaa

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15PH/MC/MP44

B.Sc. DEGREE EXAMINATION APRIL 2017

BRANCH III - PHYSICS FOURTH SEMESTER

COURSE : MAJOR - CORE
 PAPER : MATHEMATICAL PHYSICS
 TIME : $2 ½$ HOURS

MAX. MARKS : 70
SECTION - B
Answer any FIVE of the following:
$(5 \times 5=25)$

1. A proton is moving with velocity $10^{5} \mathrm{~m} / \mathrm{s}$ along Z-axis in an electric field of intensity $5 \times 10^{4} \mathrm{~V}$ along X -axis and magnetic field of intensity 0.4 Tesla along Y -axis. Calculate the magnitude and direction of total force.
2. Find $v \cdot \nabla \times u$ if $u=y z^{2} i-3 x z^{2} j+2 x y z k$ and $v=3 x i+4 z j-x y k$.
3. What are Laplace's equations? Give an account on their applications.
4. A resistance R and a $2 \mu \mathrm{~F}$ capacitor are connected in series with 200 V direct supply. Across the capacitor, a neon lamp that strikes at 120 V . Calculate the value of R to make the lamp strike 5 s after switch is closed.
5. What are symmetry elements? Explain the formation of a group of symmetry with an example.
6. Explain the finding procedure of particular integral and complementary function for a differential equation, $\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{2} y=f$. Discuss the different cases of complementary function.
7. Find the workdone in moving a particle in the force field $F=3 x^{2} i+2 x z-y j+2 k$ along the curve defined by $x^{2}=4 y$ and $3 x^{2}=8 z$ from $x=0$ and $x=2$.

SECTION - C

Answer any THREE of the following:
($3 \times 15=45$)
8. (a) The charges and coordinates of two charged particles held fixed in the $X-Y$ plane are $q_{1}=3 \mu C, x_{1}=3.5 \mathrm{~cm}, y_{1}=0.5 \mathrm{~cm}$ and $q_{2}=-4 \mu C, x_{2}=-2 \mathrm{~cm}, y_{2}=1.5 \mathrm{~cm}$. Find the magnitude and direction of the electric force on q_{2}.
(b) Calculate the force acting on the proton in a magnetic field of intensity 0.02 tesla directed along Z-axis when the proton moves with velocity $10^{8} \mathrm{~m} / \mathrm{s}$ along X -axis. (4)
(c) The acceleration of a particle at time $t \geq 0$ is given by $a=t^{2} i+2 t j+t^{3} k$. If the velocity v and the displacement r be zero at $t=0$, find the velocity and displacement at any time.
9. (a) Show that E and H satisfy $\nabla^{2} u=\frac{\partial^{2} u}{\partial t^{2}}$, if $\nabla \cdot E=0, \nabla \cdot H=0, \nabla \times E=0$, and $\nabla \times \mathrm{H}=\frac{\partial E}{\partial t}$.
(b) Show that the solutions to the Maxwell's equations are $E=-\nabla \varphi-\frac{1}{c} \frac{\partial E}{\partial t}$ and $H=\nabla \times \mathrm{A}$, where A and φ are the vector and scalar potentials respectively, satisfy the equations
(i) $\nabla \cdot A+\frac{1}{C} \frac{\partial \varphi}{\partial t}=0$
(ii) $\nabla^{2} \varphi-\frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}=4 \pi \rho$
(iii) $\nabla^{2} A=\frac{\partial^{2} A}{\partial t^{2}}$.
10. (a) Obtain Poisson's equation in electrostatics from Gauss's law. What form does it take when the charge density is zero?
(b) Show that the potential can't have a maximum or minimum value at any point in space that is not occupied by an electric charge.
11. (a) A spring with mass of 4 kg has natural length 1 m . A force of 25 N is applied and stretched the spring to a length of 1.5 m . If it is released with initial velocity $v=0$, find the position of mass at any time t.
(b) A body is propelled straight up with an initial velocity of $500 \mathrm{~m} / \mathrm{s}$ without air resistance. How long will it take the body to return the ground? Assume that the acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
12. (a) How is group theory applied in IR and Raman active vibrations? Explain with an example.
(b) Write a short note on $\mathrm{SU}(2)$ scheme.

