STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2017 BRANCH III - PHYSICS SIXTH SEMESTER REG. No.

REG. No									
		OR – CORE							
PAP	· · · · · · · · · · · · · · · · · · ·	NTUM MECHANICS							
TIM	E : 30 M			AX. MARKS : 30					
			CTION – A						
TO BE ANSWERED IN THE QUESTION PAPER ITSELF									
	WER ALL QUESTIC Choose the Correct A			(30 x 1 = 30)					
1.	Momentum of photon a) h/λ	can be expressed as b) h/v	c) h/p	d) h v					
2.	The group velocity of a) $d\omega/dk$	the wave V_g is given a b) dk/ d ω	c) dk/d λ	d) dk/dp					
3.	The expectation value a) L/2	of a particle trapped in b) L	a box of wide L is c) L/4	d) L/8					
4.	The wave function $\psi(x = a) x \rightarrow \infty$	 x) must approach zero a b) x→-∞ 	c) $x \rightarrow 0$	d) both a&b					
5.	Which of the followin a) sinx	g wave function is acce b) tanx	ptable in quantum r c) cosecx	nechanics d) tan ² x					
6.	•	speed of light would h b) infinite mass		d) depends on rest mass					
7.	If a 4Kg substance is f a) 3.6x10 ¹⁷ J	Fully converted into enerol b) 3.6x 10 ¹⁶ J	rgy the energy prod c) 3.6×10^{15} J	uced is d) 3.6x10 ¹⁴ J					
8.	: 1.	operator for total energy b) ih $\partial/\partial t$							
9.	A rod 1 meter long mo a) 0.1m	oving with a velocity 0.0 b) 0.2m	6 c will appear to a c) 0.8m	stationary observer as d) 1m					
10.	. A striking illustration a) α	of both time dilation an b) β	d length contraction c) neutron	n occurs in the particle d) μ meson					
11. The speed with which a clock should move so that it may appear to appear to lose 1 minute in each hour is									
	a) $5.4 \times 10^7 \text{m/s}$	b) $5.4 \times 10^6 \text{m/s}$	c) $5.4 \times 10^5 \text{m/s}$	d) 5.4x10 ⁴ m/s					

12. For a particle in a box of length L the general formula for the permitted De broglie wave lengths of the particle is							
a) 2L/n	b) n/2L	c) 2L/n	d) 2n/L				
13. The zero point energy of a linear harmonic oscillator is							
a) 1/2 hv	b) hv	c) 1/2 v	d) $1/2 hv^2$				
14. For non-dispersive medium the relation between group velocity (V _g) and velocity (V _p) a) $V_g > V_p$ b) $V_g < V_p$ c) $V_g = V_p$ d) V_g is inversely proportional to V_p							
15. Parity operator is defined by the relation							
a) $Pf(r)=f(-r)$	b) $Pf(r)=f(r)$	c) $Pf(r)=1/f(r)$	d) $Pf(r)=1/f(-r)$				
II Fill in the blanks: 16. The quantum operator of momentum is							
17. Unaccelerated reference frame is 18. A body which appears to be spherical to an observer at rest will appear to be							
10.11 body which appears to be spherical to all observer at rest will appear to be							

- an______ to a moving observer.
 19. The potential energy of a particle outside the box______.
- 20. The quantity ψ^2 is called_____.

III State whether true or false:

- 21. In Newtonian mechanics mass of a body does not depend on velocity of its motion .
- 22. For dispersive medium group velocity is less than phase velocity.
- 23. Uncertainity principle can prove the non-existence of electron in the medium.
- 24. $[x,p_x]=ih$.
- 25. Davisson and Germer experiment verifies Debroglie hypothesis.

IV Answer briefly:

26. State postulates of special theory of relativity.

27. What does negative result of Michelson-Morley experiment suggest?

28. What is twin paradox?

29. $[x^2, P_x] =$

30. Write the time dependent Schrodinger equation.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/QR64 B.Sc. DEGREE EXAMINATION APRIL 2017 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	QUANTUM MECHANICS AND RELA	TIVITY
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS: 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Calculate the wavelength of an α -particle accelerated through a potential difference of 2000 volts. Given Mass of proton=1.67x10⁻²⁷Kg Planck's constant =6.62x10⁻³⁴Js.
- 2. Calculate the energy difference between the ground state and the first excited state for an electron in one dimension rigid box of length 10^{-8} .(m_e=9.1 x 10^{-31} , h=6.6x 10^{-34} Js)
- 3. Normalise the following wave function in one dimension $\Psi(x)=Ae^{-\alpha x}$ for x>0 $=Ae^{+\alpha x}$ for x<0 where α is positive constant.
- 4. How fast would a rocket have to go relative to an observer for its length to be contracted to 99% of its length at rest.
- 5. The rest mass of a electron is 9.1×10^{-31} kg. What will be its mass if it were moving with 4/5 times the speed of light.
- 6. Explain Lorentz-Fitzgerald length contraction.
- 7. Obtain the normalized eigen function for a particle in a one dimensional box.

SECTION – C

ANSWER ANY THREE QUESTIONS:

(3 X 15 = 45)

- 8. Explain Davisson and Germer experiment.
- 9. Obtain time-independent Schrodinger equation.
- 10. Obtain the commutation relation for L_X , L_Y , and L_Z , the components of angular momentum operator. Show that L^2 commutes with any of the three components.
- 11. Explain Michelson-Morley experiment with a neat diagram.
- 12. Obtain Einstein's mass energy relation.
