SUBJECT CODE : 11PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2017

BRANCH III - PHYSICS
SIXTH SEMESTER
REG. No.

COURSE	$:$	MAJOR - CORE
PAPER	$:$	QUANTUM MECHANICS AND RELATIVITY
TIME	$:$	30 MINS.

SECTION - A
TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:

$(30 \times 1=30)$

I Choose the Correct Answer:

1. Momentum of photon can be expressed as
a) h / λ
b) h / v
c) h / p
d) $h v$
2. The group velocity of the wave V_{g} is given as
a) $\mathrm{d} \omega / \mathrm{dk}$
b) $\mathrm{dk} / \mathrm{d} \omega$
c) $\mathrm{dk} / \mathrm{d} \lambda$
d) $\mathrm{dk} / \mathrm{dp}$
3. The expectation value of a particle trapped in a box of wide L is
a) $L / 2$
b) L
c) $L / 4$
d) $\mathrm{L} / 8$
4. The wave function $\psi(\mathrm{x})$ must approach zero as
a) $x \rightarrow \infty$
b) $x \rightarrow-\infty$
c) $x \rightarrow 0$
d) both $a \& b$
5. Which of the following wave function is acceptable in quantum mechanics
a) $\sin x$
b) $\tan x$
c) $\operatorname{cosec} x$
d) $\tan ^{2} x$
6. An object travelling at speed of light would have
a) finite mass
b) infinite mass
c) zero mass
d) depends on rest mass
7. If a 4 Kg substance is fully converted into energy the energy produced is
a) $3.6 \times 10^{17} \mathrm{~J}$
b) $3.6 \times 10^{16} \mathrm{~J}$
c) $3.6 \times 10^{15} \mathrm{~J}$
d) $3.6 \times 10^{14} \mathrm{~J}$
8. Quantum mechanical operator for total energy in time dependent form
a) $\frac{i h}{2 \pi} \partial / \partial t$
b) ih $\partial / \partial t$
c) $\mathrm{i} \partial / \partial t$
d) $\partial x / \partial t$
9. A rod 1 meter long moving with a velocity 0.6 c will appear to a stationary observer as
a) 0.1 m
b) 0.2 m
c) 0.8 m
d) 1 m
10. A striking illustration of both time dilation and length contraction occurs in the particle
a) α
b) β
c) neutron
d) μ meson
11. The speed with which a clock should move so that it may appear to appear to lose 1 minute in each hour is
a) $5.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$
b) $5.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
c) $5.4 \times 10^{5} \mathrm{~m} / \mathrm{s}$
d) $5.4 \times 10^{4} \mathrm{~m} / \mathrm{s}$
12. For a particle in a box of length L the general formula for the permitted De broglie wave lengths of the particle is
a) $2 \mathrm{~L} / \mathrm{n}$
b) $n / 2 L$
c) $2 \mathrm{~L} / \mathrm{n}$
d) $2 n / L$
13. The zero point energy of a linear harmonic oscillator is
a) $1 / 2 \mathrm{~h} v$
b) $h v$
c) $1 / 2 \mathrm{v}$
d) $1 / 2 \mathrm{~h} v^{2}$
14. For non-dispersive medium the relation between group velocity $\left(\mathrm{V}_{\mathrm{g}}\right)$ and velocity $\left(\mathrm{V}_{\mathrm{p}}\right)$
a) $V_{g}>V_{p}$
b) $V_{g}<V_{p}$
c) $V_{g}=V_{p}$
d) V_{g} is inversely propotional to V_{p}
15. Parity operator is defined by the relation
a) $\operatorname{Pf}(\mathrm{r})=\mathrm{f}(-\mathrm{r})$
b) $\operatorname{Pf}(\mathrm{r})=\mathrm{f}(\mathrm{r})$
c) $\operatorname{Pf}(\mathrm{r})=1 / \mathrm{f}(\mathrm{r})$
d) $\operatorname{Pf}(\mathrm{r})=1 / \mathrm{f}(-\mathrm{r})$

II Fill in the blanks:

16. The quantum operator of momentum is \qquad .
17. Unaccelerated reference frame is \qquad .
18. A body which appears to be spherical to an observer at rest will appear to be an \qquad to a moving observer.
19. The potential energy of a particle outside the box \qquad .
20 . The quantity ψ^{2} is called \qquad .

III State whether true or false:

21. In Newtonian mechanics mass of a body does not depend on velocity of its motion .
22. For dispersive medium group velocity is less than phase velocity.
23. Uncertainity principle can prove the non-existence of electron in the medium.
24. $\left[x, p_{x}\right]=i h$.
25. Davisson and Germer experiment verifies Debroglie hypothesis.

IV Answer briefly:

26. State postulates of special theory of relativity.
27. What does negative result of Michelson-Morley experiment suggest?
28. What is twin paradox?
29. $\left[\mathrm{x}^{2}, \mathrm{P}_{\mathrm{x}}\right]=$
30. Write the time dependent Schrodinger equation.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.

 (For candidates admitted during the academic year 2011-12 \& thereafter)

SECTION - B

ANSWER ANY FIVE QUESTIONS:

1. Calculate the wavelength of an α-particle accelerated through a potential difference of 2000 volts. Given Mass of proton $=1.67 \times 10^{-27} \mathrm{Kg}$
Planck's constant $=6.62 \times 10^{-34} \mathrm{~J}$.
2. Calculate the energy difference between the ground state and the first excited state for an electron in one dimension rigid box of length $10^{-8} .\left(\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31}, \mathrm{~h}=6.6 \times 10^{-34} \mathrm{Js}\right)$
3. Normalise the following wave function in one dimension

$$
\begin{aligned}
& \Psi(x)=\mathrm{Ae}^{-\alpha \mathrm{x}} \text { for } \mathrm{x}>0 \\
& =\mathrm{Ae}^{+\alpha \mathrm{a}} \text { for } \mathrm{x}<0 \text { where } \alpha \text { is positive constant. }
\end{aligned}
$$

4. How fast would a rocket have to go relative to an observer for its length to be contracted to 99% of its length at rest.
5. The rest mass of a electron is $9.1 \times 10^{-31} \mathrm{~kg}$. What will be its mass if it were moving with $4 / 5$ times the speed of light.
6. Explain Lorentz-Fitzgerald length contraction.
7. Obtain the normalized eigen function for a particle in a one dimensional box.

SECTION - C

ANSWER ANY THREE QUESTIONS:
($3 \times 15=45$)
8. Explain Davisson and Germer experiment.
9. Obtain time-independent Schrodinger equation.
10. Obtain the commutation relation for $\mathrm{L}_{X}, \mathrm{~L}_{Y}$, and L_{Z}, the components of angular momentum operator. Show that L^{2} commutes with any of the three components.
11. Explain Michelson-Morley experiment with a neat diagram.
12. Obtain Einstein's mass energy relation.

