STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/NP64

B.Sc. DEGREE EXAMINATION APRIL 2017 BRANCH III - PHYSICS SIXTH SEMESTER

REG. No.

COURSE	:	MAJOR – CORE
PAPER	:	NUCLEAR PHYSICS
TIME	:	30 MINS.

MAX. MARKS : 30

SECTION – A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF ANSWER ALL QUESTIONS:

I. CHOOSE THE CORRECT ANSWER:

- The contribution of coulomb energy in the semi-empirical mass formula of a nucleus of mass number A and atomic number Z is of the form (a = constant)----
 (a) aZA^{2/3}
 (b) aZ(Z-1)/A^{1/3}
 (c) aZ(Z+1)/A
 (d) aZ²/A^{2/3}
- 3. The classical electron radius is of the order of ______ (a) 10^{-8} cm (b) 10^{-11} cm (c) 10^{-13} cm (d) 10^{-15} cm
- 4. Nuclei which are α -emitters are more likely to have mass number A such that ______(a) A < 200 (b) 200 < A < 100 (c) 100 < A < 50 (d) A > 50
- 5. In Fermi theory of β -decay, the number of emitted electrons with momentum p and Energy E, in the allowed approximation, is proportional to (E₀ is the total energy given up by the nucleus) __________________________________(d) p (E₀-E)² (d) p (E₀-E)²
- 6. The mean life time of one of the atoms of a radioactive sample is ______ (a) $1/\lambda$ (b) λ (c) $\lambda \ln 2$ (d) $2 \ln \lambda$
- 7. A cyclotron has an oscillation frequency of 12×10^6 cps and dee radius of 53.3 cms. The mass of deuteron is 3.3×10^{-27} kg. The value of magnetic induction B required is _____ (a) 1.6 Wb/m² (b) 0.8 Wb/m² (c) 3.2 Wb/m² (d) 4.8 Wb/m²

9. The quadrupole moment of the nucleus is a ______ (a) Tensor (b) Scalar (c) Vector

(d) None of these

171	
141	

10. The Nuclear react	tion 4 $_1H^1 \rightarrow _2He^4 + 2 _{-1}e^0 -$	+26 MeV represents	
(a) Fusion	(b) Fission		(d) Υ - decay
11. The typical energ	ies released in nuclear fise	sion and fusion reaction a	re respectively
(a) 50 MeV and 1000 MeV (c) 1000 MeV and 50 MeV		(b) 200 MeV and 1000 MeV(d) 200 MeV and 10 MeV	
final nucleus at th	of the nucleus ${}_{92}U^{238}$ involution in the process wills	have	
(a) $Z = 82, A = 20$	(b) Z = 84, A = 224	(c) $Z = 88, A = 206$	(d) $Z = 76$, $A = 200$
13. Which of the follo (a) Photon	owing elementary particle (b) μ -meson	e is a lepton (c) π-meson	(d) proton
	le with zero Baryon numb (b) Neutron (c)	0	
(a) 13 up quarks a	e atom ⁹ Be ₄ consist of nd 13 down quarks nd 13 down quarks	(b) 13 up quarks and	
II. FILL IN THE	BLANKS:		
16. Mass defect, Δ m	is		
17. The relation of G	eiger- Nuttal law is		
18. Geiger Muller co causing pulse.	unter cannot provide info	ormation about the	or
19. The ratio of secor	ndary neutrons produced t	o original neutrons is call	led
20. CPT means		, ·	
III. STATE WHE	THER TRUE OR FALS	SE:	

- 21. In the semi-empirical formulae the observed parity of odd Z and odd N nuclei in nature is taken care of δ -term.
- 22. C^{14} is used to determine the age of the specimen.
- 23. Nuclear emulsion detector can be easily affected by temperature.
- 24. The sun release energy by spontaneous combustion.
- 25. The quark structure of Δ^{++} is UUU.

IV. ANSWER BRIEFLY:

26. What are magic numbers?

27. Unit of radioactivity is?

28. What is the energy produced from Van de Graff generator?

29. What is chain reaction?

30. Abbreviation of NQR is?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/NP64

B.Sc. DEGREE EXAMINATION APRIL 2017 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	NUCLEAR PHYSICS	
TIME	:	2 1/2 HOURS	MAX. MARKS : 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

(5X 5 = 25)

- 1. The radii of oxygen and lead nuclei are found to be 3 fm and 7 fm respectively. Their masses are 2.7×10^{-26} kg and 3.4×10^{-25} kg respectively. Calculate their densities.
- 2. The activity of certain nuclide decreases to 15% of its original value of 10 days. Find its half-life.
- 3. A frequency modulated cyclotron is capable of accelerating protons to 500 MeV. What is the ratio of highest to lowest frequency needed to accomplish this?
- 4. Find out the Q-value of the reaction 208 Pb (56 Fe, 54 Fe) 210 Pb Given : M(208 Pb) = 207.976641 amu M(56 Fe) = 55.934939 amu

Also find the threshold for this reaction.

5. Determine the following reaction are allowed or forbidden.

 $M(^{210} Pb) = 209.984178$ amu $M(^{54}Fe) = 53.939612$ amu

(i) $p + p \rightarrow K^+ + \sum^+$ (ii) $p + \pi^- \rightarrow \sum^0 + \eta^0$ (iii) $p + p \rightarrow p + p + p + O$

ANSWER ANY THREE QUESTIONS:

- 6. Explain NMR and mention its few applications.
- 7. What is nuclear fission and explain C-N cycle.

SECTION C

(3X15 = 45)

- 8. Derive the various factors which contribute to binding energy of the nucleus and derive semi empirical formula based on these factors.
- 9. Define activity. Derive the relation $A = A_0 e^{-\lambda t}$ and explain secular equilibrium.

- 10. Give an account of principle of working of a cyclotron. Discuss the limitations of energy that can be obtained by this machine and its possible improvement.
- 11. Define and calculate the threshold energy of an endoergic nuclear reactions that proceeds through the formation of a compound nucleus.
- 12. Discuss the quantum numbers associated with elementary particles. Give the corresponding conservation laws. Give at least one example in support of each conservation law.

#