STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2006- 07)

SUBJECT CODE: MT/PC/AG24

M. Sc. DEGREE EXAMINATION, APRIL 2007 BIOINFORMATICS SECOND SEMESTER

COURSE PAPER TIME	: CORE : ALGORITHMS : 3 HOURS	MAX. MARKS: 100			
	SECTION – A				
ANSWEI	R ANY SIX QUESTIONS ONLY:	(6 X 17)			
1.	For the following graph find				
	a) (i) all the simple paths from A to I) (3)			
	(ii) the distance from A to D	(2)			
	(iii) diameter of G	(2)			
	(iv) all the cycles which include the	vertex 'A' (2)			
	(v) all the cycles of G	(2)			
	A D C				
	b) Define and give one example	(6)			
		complete graph			
2.	(i) What is a regular graph?	(1)			
	Draw a 3-regular graph with 6 ver				
	(ii) Define bipartite graph.	(1)			
	Find the number of edges in $K_{3,3}$	(3)			
	(iii) What is a tree?	(1)			
	Find the number of edges in a tree				
	_	jacency matrix for the following graph.			
		(3+2+3)			
	A B X Y	C. Z			
3.	Explain about storage and data structu	re used in DBMS. (9+3)	8)		
4.	a) Write an algorithm to search for an	element using sequential search. (11))		

b) Analyse your algorithm for the best case and worst case.

(6)

- 5. Explain Boyer-Moore Algorithm with the Reuvistics involved in it and compare the same with K.M.P matcher and real string matcher. (12+5)
- 6. a) What is a heap? Write an algorithm to sort elements using heap. (7)
 - b) Trace your algorithm for arranging the following elements in order. (10) 42, 23, 74, 11, 65, 58, 94, 36, 99, 87.
- 7. a) Write binary search algorithm. (11)
 - b) Compare binary and sequential search. (6)
- 8. Write short notes on any 3
 - (i) Dynamic programming
 - (ii) Priority queues
 - (iii) Biconnected components
 - (iv) Binary Trees
- 9. a) What is a spanning tree? (2)
 - b) Write the Dijishtra Prim's algorithm to find the minimum cost spanning tree. (7)
 - c) Explain depth first traversal algorithm with an example. (8)
- 10. Explain shortest path algorithm to find the shortest distance from single source to all destination. (9)

Trace your algorithm for the following graph to find shortest path from V_0 to all other vertices. (8)

