STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086

(For candidates admitted from the academic year 2015-16)

SUBJECT CODE : 15MT/MC/SF45

B. Sc. DEGREE EXAMINATION, APRIL 2017
 BRANCH I - MATHEMATICS FOURTH SEMESTER

COURSE : MAJOR CORE
PAPER : SEQUENCE, SERIES AND FOURIER SERIES TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

$(10 \times 2=20)$

1. If A is the set of letters in the word "trivial" and B is the set of letters in the word "difficult". Find $A-B$ and $A \cap B$.
2. Find the inverse of the function $f: R \rightarrow R$ defined by $f(x)=4 x+5, x \in R$.
3. Define limit of a sequence.
4. Write any two subsequences of a sequence of integers.
5. Define Cauchy sequence.
6. Give an example of a conditionally convergent series.
7. Examine the convergence of $\sum_{n=1}^{\infty} \frac{1}{2 n+5}$
8. Write Abel's lemma.
9. Define even function and give an example.
10. Find the Fourier coefficient a_{0} for $f(x)=\sin x$ in the interval $(0, \pi)$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. If $f: A \rightarrow B$ and if $X \subset B, Y \subset B$, Prove that $f^{-1}(X \cup Y)=f^{-1}(X) \cup f^{-1}(Y)$.
12. Prove that countable union of countable sets is countable.
13. If the sequence $s_{n}{ }_{n=0}^{\infty}$ of real numbers is convergent to L, Prove that $s_{n}{ }_{n=0}^{\infty}$ can not converge to a limit distinct from L.
14. Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is convergent.
15. Examine the convergence of $\sum_{n=0}^{\infty} \frac{n^{3}+1}{2^{n}+1}$.
16. If $\quad a_{n=1}^{\infty}$ is a sequence of real numbers whose partial sums $s_{n}=\sum_{k=1}^{n} a_{k}$ form a bounded sequence and if $b_{n}{ }_{n=1}^{\infty}$ is a non increasing sequence of non negative numbers which converges to 0 , Prove that $\sum_{k=1}^{\infty} a_{k} b_{k}$ converges.
17. Find the Fourier sine series of $f(x)=e^{x}$ in $(0, \pi)$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. a) Prove that the set of rational numbers in $[0,1]$ is uncountable and deduce that the set of all real numbers is uncountable.
b) Prove that a non decreasing sequence which is bounded above is convergent.
19. a) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
b) State and establish the ratio test.
20. Determine the Fourier series expansion for $f(x)=x+x^{2}$ in $(-\pi, \pi)$ and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

ahacalacala

