STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2015-16)

SUBJECT CODE : 15MT/MC/SF45

B. Sc. DEGREE EXAMINATION, APRIL 2017 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE: MAJOR COREPAPER: SEQUENCE, SERIES AND FOURIER SERIESTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL THE QUESTIONS:

- 1. If A is the set of letters in the word "trivial" and B is the set of letters in the word "difficult". Find A-B and $A \cap B$.
- 2. Find the inverse of the function $f: R \to R$ defined by $f(x) = 4x + 5, x \in R$.
- 3. Define limit of a sequence.
- 4. Write any two subsequences of a sequence of integers.
- 5. Define Cauchy sequence.
- 6. Give an example of a conditionally convergent series.

7. Examine the convergence of
$$\sum_{n=1}^{\infty} \frac{1}{2n+5}$$

- 8. Write Abel's lemma.
- 9. Define even function and give an example.
- 10. Find the Fourier coefficient a_0 for $f(x) = \sin x$ in the interval $(0, \pi)$.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

 $(10 \times 2 = 20)$

- 11. If $f: A \to B$ and if $X \subset B, Y \subset B$, Prove that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- 12. Prove that countable union of countable sets is countable.

13. If the sequence $s_n \stackrel{\infty}{}_{n=0}^{\infty}$ of real numbers is convergent to *L*, Prove that $s_n \stackrel{\infty}{}_{n=0}^{\infty}$ can not converge to a limit distinct from *L*.

14. Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent.

15. Examine the convergence of $\sum_{n=0}^{\infty} \frac{n^3 + 1}{2^n + 1}$.

..2

 $(2 \times 20 = 40)$

16. If $a_n \int_{n=1}^{\infty} a_k$ is a sequence of real numbers whose partial sums $s_n = \sum_{k=1}^{n} a_k$ form a bounded

sequence and if $b_n \Big|_{n=1}^{\infty}$ is a non increasing sequence of non negative numbers which

converges to 0, Prove that $\sum_{k=1}^{\infty} a_k b_k$ converges.

17. Find the Fourier sine series of $f(x) = e^x$ in $(0, \pi)$.

SECTION – C ANSWER ANY TWO QUESTIONS:

- 18. a) Prove that the set of rational numbers in [0,1] is uncountable and deduce that the set of all real numbers is uncountable.
 - b) Prove that a non decreasing sequence which is bounded above is convergent.

(12+8)

- 19. a) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
 - b) State and establish the ratio test. (6+14)
- 20. Determine the Fourier series expansion for $f(x) = x + x^2$ in $(-\pi, \pi)$ and hence

deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.