STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE: 15MT/MC/ML24

B. Sc. DEGREE EXAMINATION, APRIL 2017 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: MAJOR CORE	
PAPER	MULTIPLE INTEGRALS AND LAPLACE TRANSFORMS	
TIME	: 3 HOURS	MAX. MARKS : 100

SECTION A

Answer All Questions:

 $10 \ge 2 = 20$

- 1. Evaluate $\int_{0}^{3} \int_{1}^{2} xy \ x + y \ dydx$. 2. Evaluate $\int_{0}^{a} \int_{0}^{b} x^{2} + y^{2} \ dxdy$. 3. Write the definition of jacobian . 4. Evaluate $\int_{0}^{a} \int_{0}^{a^{2}-x^{2}} \overline{x^{2} + y^{2}} \ dydx$. 5. Evaluate $\int_{0}^{\infty} e^{-x^{2}} dx$. 6. Define Beta function. 7. Prove that $L(Cosat) = \frac{s}{s^{2} + a^{2}}$
- 8. Find $L(t^3 3t^2 + 2)$.
- 9. Find $L(te^{-t}sint)$.

10. Find the inverse laplace transform of $\frac{1}{(s-3)^5}$

SECTION B

Answer Any Five Questions:

5 x 8 = 40

- 11. By changing the order of integration evaluate $\int_{0}^{\infty} \frac{x}{x} \frac{e^{-y}}{y} dx dy$.
- 12. Evaluate $r^3 sin^2 \theta dr d\theta$ over the area of the circle $r = acos\theta$.
- 13. Evaluate $\int_{R} (x + y)^2 dx dy$ where R is the parallelogram bounded by the lines

x + y = 0, x + y = 2, 3x - 2y = 0, 3x - 2y = 3.

14. Evaluate $\int_{0}^{\infty} x^{n} e^{-ax} dx$. 15. $\int_{0}^{\pi/2} \overline{tan\theta} d\theta = \frac{\pi}{2}$ 16. L[cost cos2t]. 17. Find $L^{-1} \frac{1+2s}{(s+2)^{2}(s-1)^{2}}$.

SECTION C

Answer Any Two Questions:

2 x 20= 40

- 18. (i) Evaluate $\frac{dxdydz}{1-x^2-y^2-z^2}$ for all positive values of *x*, *y*, *z* for which the integral is real.
 - (ii) Evaluate $(x y)^4 e^{x+y} dx dy$ where *R* is the square with vertices (1,0), 2,1, 1,2 and (0,1).
- 19. (i) Show that $\Gamma n + 1 = n\Gamma n$.

(ii) Show that
$$\frac{1.3.5...(2n-1)\pi}{2.4.6..(2n-1)\pi} = \frac{\Gamma n + \frac{1}{2}}{\Gamma n + 1}$$

20. (i) Find the laplace transform of $f(t) = e^{-t}$ when 0 < t < 4(ii) Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 4e^{-t}$ given that $y = \frac{dy}{dt} = 0$ when t = 0

#