STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16 & thereafter)

SUBJECT CODE : 15MT/AC/MP25

B. Sc. DEGREE EXAMINATION, APRIL 2017 BRANCH III – PHYSICS SECOND SEMESTER

COURSE : ALLIED CORE PAPER : MATHEMATICS FOR PHYSICS - II TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

- 1. Evaluate $\left[\int_{1}^{2} \int_{1}^{x} xy^2 dy dx \right]$.
- 2. Change the order of integration in the integration in the integral $\int_{0}^{a} \int_{x^{2}}^{2a-x} xy dx dy$.
- 3. Integrate: $\left| \int_{0}^{\frac{\pi}{2}2\cos\theta} \int_{0}^{2\cos\theta} dr d\theta \right|.$

4. If
$$x + y = u$$
, $y = uv$ find $\frac{\partial(x, y)}{\partial(u, v)}$

- 5. Find $L[cos^2 3t]$.
- 6. Find $L^{-1}\left[\frac{1}{s^2+4s+5}\right]$
- 7. Is $w = z^3$ is a conformal mapping? If so find its critical point.
- 8. State Taylor's Theorem.

9. Examine whether the differential equation $x^3 \frac{d^2 y}{dx^2} + y = 0$ is regular or irregular.

10. Define Legendre equation.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

- (5x8=40)
- 11. Evaluate $\int_{R} (x y)^4 e^{x+y} dx dy$, where R is the square with vertices (1,0), (2,1), (1,2) and (0,1).

(10x2=20)

15MT/AC/MP25

(2x20=40)

12. By changing into polar coordinates integrate $\left[\int_{0}^{2}\int_{0}^{\sqrt{4-x^{2}}} (x^{2}y + y^{3}) dy dx\right].$

- 13. Find the Laplace transform of following functions (a) $te^{-t} \cos t$ (b) f(t) = 0 when $0 < t \le 2$ = 3 when t > 2
- 14. Find $L^{-1}[\frac{1}{(s^2+9)^2}]$.
- 15. Find the image of the square region with vertices (0,0), (2,0), (2,2), (0,2) under the transformation w = (1 + i)z + (2 + i).
- 16. Find the residue of $\frac{2z}{(z-1)^2(z+4)}$ at all its poles.
- 17. Derive the generating function for Legendre polynomial $P_n x$.

SECTION-C

ANSWER ANY TWO QUESTIONS:

18. (a) Evaluate $\iint (x^2 + y^2) dx dy$ over the region for which are each ≥ 0 and $x + y \le 1$. (b) Evaluate $\iint \frac{dx dy dz}{(x + y + z + 1)^3}$ taken over the region bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1. (10+10)

19. (a) Find the inverse Laplace transform of $\frac{s}{(s^2 + 2s + 5)}$

(b) Solve the differential equation $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$ given that y(0) = y'(0) = 0using Laplace transform. (8+12)

20. (a) Expand $f(z) = \frac{z}{(z-1)(2-z)}$ as a power series in the region (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z-1| > 1. (b) Solve the differential equation $(1+x^2)\frac{d^2y}{dx^2} + xy' - y = 0$ using power series method. (10+1)
