STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2017 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR COREPAPER: VECTOR SPACES AND LINEAR TRANSFORMATIONSTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS.

(10X2=20)

(5X8=40)

- 1. Define internal direct sum of a vector space.
- 2. Prove that kernel of a homomorphism is a subspace.
- 3. In $F^{(3)}$, the vector space of 3-tuples over F, the vectors 1, 1, 0, 3, 1, 3 and (5, 3, 3) are linearly dependent.
- 4. Define a basis of a vectors space and give an example.
- 5. Prove that the inner product is conjugate symmetry in second variable over complex field.
- 6. Prove that orthogonal complement of a subspace of an inner product space is a subspace.
- 7. Define algebra and give an example.
- 8. In A V, algebra of linear transformations on V over F, is every right-invertible element is also left invertible? Justify.
- 9. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$, defined by T x, y, z = x + y, 2z. Find the matrix of T with respect to the bases 1, 1, 0, 0, 1, 4, 1, 2, 3 and 1, 0, 0, 2.
- 10. When do we say a matrix is diagonalizable?

SECTION – B

ANSWER ANY FIVE QUESTIONS.

- 11. If A and B are subspace of V prove that (A + B)/B is isomorphic to $A/(A \cap B)$.
- 12. If $v_1, ..., v_n$ is a basis of V over F and if $w_1, ..., w_m$ in V are linearly independent over F, then prove that $m \le n$.
- 13. State and prove Schwarz inequality.
- 14. Let V be the inner product space of polynomials, in a variable x, over the real field F of degree 2 or less with inner product defined by p x, $q(x) = \int_{-1}^{1} p x q x dx$. Find orthonormal basis corresponding to the basis $1, x, x^2$.
- 15. If $\lambda \in F$ is a characteristic root of $T \in A V$, then prove that λ is a root of the minimal polynomial of T. Also, prove that T has only a finite number of characteristic roots in F.

- 16. If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
- 17. Examine whether the following matrix $\begin{array}{cc} 5 & -3 \\ 3 & -1 \end{array}$ is diagonalizable or not.

SECTION -C

ANSWER ANY TWO QUESTIONS.

(2X20=40)

- 18. a) If V is a finite dimensional vector space and if W is a subspace of V, then prove that i) W is also finite dimensional
 - ii) dim $W \leq \dim V$
 - iii) $\dim V/W = \dim V \dim W$.
 - b) If *V* and *W* are of dimensions *m* and *n*, respectively, over *F*, then prove that Hom(V, W) is of dimension *mn* over *F*.
- 19. a) State and prove Gram-Schmidt orthgonalization process.
 - b) If A is an algebra with unit element, over F, then prove that A is isomorphic to a subalgebra of A(V) for some vector space V over F.
- 20. a) If $T \in A(V)$ and if $dim_F V = n$, and if T has n distinct characteristic roots in F, then prove that there is a basis of V over F which consists of characteristic vectors of T.
 - b) Consider the linear operator T x, y = 2x, x + y on R^2 . Find the matrix of T with the respect to the standard basis B = 1, 0, 0, 1 R^2 . Use similarity transformation $A' = P^{-1}AP$ to determine the matrix A' with respect to the basis B' = -2, 3, 1, -1.
