STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2017

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE
 PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
 TIME : 3 HOURS MAX. MARKS : 100

SECTION - A
ANSWER ALL QUESTIONS.
(10X2=20)

1. Define internal direct sum of a vector space.
2. Prove that kernel of a homomorphism is a subspace.
3. In $F^{(3)}$, the vector space of 3 -tuples over F, the vectors $1,1,0,3,1,3$ and $(5,3,3)$ are linearly dependent.
4. Define a basis of a vectors space and give an example.
5. Prove that the inner product is conjugate symmetry in second variable over complex field.
6. Prove that orthogonal complement of a subspace of an inner product space is a subspace.
7. Define algebra and give an example.
8. In $A V$, algebra of linear transformations on V over F , is every right-invertible element is also left invertible? Justify.
9. Consider the linear transformation $T: R^{3} \rightarrow R^{2}$, defined by $T x, y, z=x+y, 2 z$. Find the matrix of T with respect to the bases $1,1,0,0,1,4,1,2,3$ and $1,0,0,2$.
10. When do we say a matrix is diagonalizable?

SECTION -B

ANSWER ANY FIVE QUESTIONS.

11. If A and B are subspace of V prove that $(A+B) / B$ is isomorphic to $A /(A \cap B)$.
12. If $v_{1}, \ldots v_{n}$ is a basis of V over F and if $w_{1}, \ldots w_{m}$ in V are linearly independent over F, then prove that $m \leq n$.
13. State and prove Schwarz inequality.
14. Let V be the inner product space of polynomials, in a variable x , over the real field F of degree 2 or less with inner product defined by $p x, q(x)={ }_{-1}^{1} p x \quad q x d x$. Find orthonormal basis corresponding to the basis $1, x, x^{2}$.
15. If $\lambda \in F$ is a characteristic root of $T \in A V$, then prove that λ is a root of the minimal polynomial of T. Also, prove that T has only a finite number of characteristic roots in F.
16. If V is finite dimensional over F , then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
17. Examine whether the following matrix $\begin{array}{ll}5 & -3 \\ 3 & -1\end{array}$ is diagonalizable or not.

SECTION -C

ANSWER ANY TWO QUESTIONS.

$(2 \times 20=40)$
18. a) If V is a finite dimensional vector space and if W is a subspace of V, then prove that i) W is also finite dimensional
ii) $\operatorname{dim} W \leq \operatorname{dim} V$
iii) $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
b) If V and W are of dimensions m and n, respectively, over F, then prove that $\operatorname{Hom}(V, W)$ is of dimension $m n$ over F.
19. a) State and prove Gram-Schmidt orthgonalization process.
b) If A is an algebra with unit element, over F , then prove that A is isomorphic to a subalgebra of $A(V)$ for some vector space V over F.
20. a) If $T \in A(V)$ and if $\operatorname{dim}_{F} V=n$, and if T has n distinct characteristic roots in F, then prove that there is a basis of V over F which consists of characteristic vectors of T.
b) Consider the linear operator $T x, y=2 x, x+y$ on R^{2}. Find the matrix of T with the respect to the standard basis $B=1,0,0,1 \quad R^{2}$. Use similarity transformation $A^{\prime}=P^{-1} A P$ to determine the matrix A^{\prime} with respect to the basis $B^{\prime}=-2,3,1,-1$.

