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Abstract. A natural kind of compactification of the virtual moduli spaces of
rational functions of one complex variable is given. To describe the boundary
points geometrically, the authors introduce the concept of rational functions
with nodes, defined on partially crushed punctured Riemann spheres with
nodes.

Keywords. Rational functions with nodes, compactification.

2010 MSC. Primary 30F60; Secondary 32G15, 37F30.

1. Introduction and main results

A dynamical structure of a rational function R : Ĉ→ Ĉ is the Möbius conju-
gacy class of R. The moduli space of rational functions of degree d is the set of
all dynamical structures of rational functions of degree d, and is denoted by Md.
For the details and backgrounds, see for instance, [3], [7], [8], and [9].

In this note, we introduce “rational functions with nodes” and the dynamical
structures of them. Here, we also consider a natural kind of marking for such
functions, and hence actually we discuss about marked rational functions with
nodes. To give precise definitions of them, first we recall that a ∂-marked n-
punctured Riemann sphere Ŝ = (D(Ŝ), N(Ŝ)) with nodes is a pair of a family

D(Ŝ) = {Dm}Mm=1 of ∂-marked nm (≥ 3)-punctured Riemann spheres Dm and

the node set N(Ŝ) consisting of J pairs {pj, p′j} of punctures of different Dm(j)

and Dm′(j), which satisfy that

M∑
m=1

nm = 2J + n, J = M − 1 ≤ n− 3,
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and that the topological space Ŝ∗ obtained from the disjoint union |D|(Ŝ) =∑M
m=1 Dm by filling and identifying all pairs of punctures in N(Ŝ) is connected.

Here, equipping Ŝ∗ with a ∂-marking induced from that of Ŝ, we call Ŝ∗ the
realization of Ŝ. Cf., for instance, [1], [2], [5], and [6]. Also see Definition 1.4
below for the precise definition of ∂-marking.

A puncture of Ŝ is called nodal if it belongs to N(Ŝ), and non-nodal otherwise.

When we ignore ∂-marking, we call Ŝ simply an n-punctured Riemann sphere with
nodes. In the sequel, we regard punctured Riemann spheres without nodes also
as those with (no) nodes.

Now, the limit of rational functions may degenerate to the identity function
on some components of the punctured Riemann sphere with nodes obtained as
the limit of the punctured Riemann spheres where the functions are defined. To
describe such phenomena precisely, we generalize the above definition as follows.

Definition 1.1 (Partial crush). A partial crush of level n is an ordered pair

(Ŝ, R̂) of an n-punctured Riemann sphere Ŝ = (D(Ŝ), N(Ŝ)) with nodes and a

pair R̂ of a family D(R̂) = {D′i}Ii=1 of ni-punctured Riemann spheres D′i and the

node set N(R̂) consisting of the pairs {pr, p′r} of punctures of different D′i(r) and

D′i′(r) such that

D(R̂) ⊂ D(Ŝ), N(R̂) ⊂ N(Ŝ),

which satisfies two additional conditions: Every pair in N(Ŝ) contains a puncture

of R̂ and every component in D(Ŝ)−D(R̂) has at least two non-nodal punctures

of Ŝ.

We say that two partial crushes (Ŝ1, R̂1) and (Ŝ2, R̂2) of level n are equivalent

if there is a homeomorphism f : |D|(Ŝ1) → |D|(Ŝ2) which preserves punctures

and nodes and is a conformal map of |D|(R̂1) onto |D|(R̂2). A partially crushed

n-punctured Riemann sphere with nodes is the equivalence class [Ŝ, R̂] of a partial

crush (Ŝ, R̂) of level n.

In the sequel, we abbreviate [Ŝ, R̂] to R̂ when it causes no confusion. Also,

we call a component in D(Ŝ)−D(R̂) a crushed component of R̂, though it is not

a component in D(R̂).

Remark 1.2. Let D′i
∗

be the closure of D′i ∈ D(R̂) in Ŝ∗. Then by definition,

every component of W = Ŝ∗−
⋃I
i=1 D

′
i

∗
is a punctured Riemann sphere belonging

to D(Ŝ)−D(R̂). The second additional condition that every crushed component
has at least two non-nodal punctures is crucial to give a natural kind of definition
of “rational function with node”. Also see the proof of Theorem 1.14.



Rational functions with nodes 87

Such an [Ŝ, R̂] can be characterized by the crush data as follows. For every
crushed component D, let L(D) and B(D) be the number of all non-nodal punc-

tures of Ŝ on D and the set of all punctures of R̂ in N(Ŝ) paired with punctures

on D, respectively. We call B(D) a singular bouquet of punctures of R̂, and L(D)
the level of the singular bouquet B(D), which is also denoted by L(B(D)). Here
note that every singular bouquet contains at most one puncture of D′i for every

D′i in D(R̂). A puncture p in a singular bouquet B is called singular, and we call
L(B) also the level L(p) of p.

Let {B1, · · · , BN} (N = M − I) be the maximal set of the singular bouquets

of R̂. Then the set of all pairs {(B`, L(B`)) | ` = 1, · · · , N} is called the crush

data of R̂. Let {q1, · · · , qA} be the set of all non-nodal non-singular punctures

of R̂, and we have

A+
N∑
`=1

L(B`) = n.

We set X(R̂) = {q1, · · · , qA, B1, · · · , BN} and write X(R̂) also as {qr}A+Nr=1 . Fur-
ther, set L(qr) = 1 for every r ≤ A.

Remark 1.3. The crush data of R̂ depend on the choice of Ŝ. But, possible
choice of the set of the singular bouquets and their levels is finite in number. Also
by the second additional condition in Definition 1.1, the level of every singular
bouquet, or of every singular puncture, is not less than 2.

Definition 1.4 (∂-marking). A ∂-marking of a partially crushed n-punctured

Riemann sphere [Ŝ, R̂] with nodes is a surjection ι of {1, · · · , n} to the set X(R̂)

such that ι−1(qr) consist of L(qr) values for every qr ∈ X(R̂). If there are no
crushed components, a ∂-marking is just an order of all non-nodal punctures.

We say that a partially crushed n-punctured Riemann sphere [Ŝ, R̂], or simply

R̂, with nodes is marked if we equip Ŝ with a ∂-marking, which also canonically
induces the ∂-marking of R̂. In the sequel, a marked R̂ is denoted by the same
R̂ unless we need the ∂-marking explicitly.

A ∂-marking of R̂ can be considered also as an ordered set of disjoint subsets
Er consisting of L(qr) values in {1, · · · , n} for every qr ∈ X(R̂) which cover

{1, · · · , n}, and is always induced canonically from the ∂-marking of Ŝ, where

R̂ = [Ŝ, R̂].

Definition 1.5 (Realization). For a marked partially crushed n-punctured Rie-

mann sphere R̂ with nodes, let R̂∗ be obtained from |D|(R̂) by filling and identi-

fying every pair of punctures in N(R̂) by one point, which is called a non-singular
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node of R̂∗. Equipping R̂∗ with the ∂-marking of R̂, we call R̂∗ the realization of
R̂.

Remark 1.6. R̂∗ is not necessarily connected. If it is connected, then every
singular bouquet consists of a single singular puncture.

We call every connected component of R̂∗ an ordinary part of R̂, while every
Di of D(R̂) an ordinary component of R̂.

Definition 1.7 (Rational function with nodes). A rational function (F , R̂) with
nodes of type d is a family F = {Fi}Ii=1 of rational functions Fi on ordinary

components D′i of a partially crushed (d + 1)-punctured Riemann sphere R̂ =

({D′i}Ii=1, N(R̂)) with nodes satisfying the following conditions.

1. Every function Fi is not the identity and has its (not necessarily simple)
fixed points only at punctures p of D′i with multiplicity not greater than
the level L(p) of p.

2. (Index formula at nodes) Every nodal puncture of R̂ is either a simple
fixed point of, or not fixed by, the function in F corresponding to the
puncture. The sum of the dynamical indices at the pair of punctures in the
same node is 1.

Next, recall that the generic locus GMd of the moduli space Md is the sublocus
corresponding to all rational functions of degree d with simple fixed points only,
which are called generic. A marking of a generic rational function F is an order
of d + 1 fixed points of F . The set of the dynamical structures of all marked
generic rational functions of degree d is called the generic virtual moduli space
of degree d, and is denoted by GVMd. Then as in [7], there are two canonical
projections ofGVMd: Using the notations as in [5] and [10], the Milnor projection

ρ : GVMd → V Conf(d + 1, Ĉ) maps every point [F ] of GVMd to the Möbius
equivalence class of the ordered set of d + 1 fixed points of F , and the index
decoration Λ : GVMd → (C∗)d+1 maps [F ] to a (d+ 1)-dimensional vector

Λ([F ]) = (λ1([F ]), · · · , λd+1([F ])),

where λr([F ]) is the dynamical index of F at the r-th fixed point pr for every r.
The pair (ρ,Λ) of these projections gives a biholomorphic injection of GVMd.

Now, we introduce a similar kind of marking and index decoration as above
for rational functions with nodes.

Definition 1.8 (Reduced index decoration). A marking of a rational function

(F , R̂) with nodes is the ∂-marking ι of R̂, or equivalently, the ordered set

{Er}A+Nr=1 . A marked rational function with nodes is denoted by a triple (F , R̂, ι),
or more precisely, by (F , R̂, {Er}).
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Next, the reduced index decoration Λ# for (F , R̂, ι) is defined at every puncture

of R̂ as follows: If q ∈ X(R̂) is a non-singular puncture of R̂, then the value of
Λ# at q is the index of Fq at q, where Fq is the function in F corresponding to

q. If q ∈ X(R̂) is a singular bouquet B, then for every singular puncture p ∈ B,
the value of Λ# at p is the coefficients (c1, · · · cL) ∈ CL of the principal part

c1
z

+ · · ·+ cL
zL

of the Laurent series expansion of 1/(z − Fp(z)) at p = 0 with the global coor-
dinate z of C and L = L(B). Here, using the cyclic order of punctures induced
from the ∂-marking on the component corresponding to p, we take two ordered
punctures “adjacent” to p on the component, and send p and these two punctures
to 0, 1,∞, respectively.

Attaching the vectors defined as above to all singular punctures, we obtain a
point of CA+

∑
` #(B`)L(B`) as the reduced index decoration Λ# for (F , R̂, ι), where

#(B) is the cardinality of B.

Remark 1.9. In particular, c1 in the above definition is the index of Fp at p = 0.
(Cf. [4] and [10].) Here recall that the indices satisfy the index formula, i.e., the
sum of all indices on an ordinary component is 1. Recall that c` except for c1
depend on the choice of punctures normalized to be 1 and ∞.

Definition 1.10 (Dynamical structure). We say that two marked rational func-

tions (F , R̂, ι) and (G, R̂′, ι′) with nodes of type d are marking-preserving Möbius
conjugate if

1. [R̂] = [R̂′] including the ∂-markings, i.e., there are Möbius transformations
Ti for all i such that D′i = Ti(Di) which preserve the ∂-markings and nodes

including the order, where D(R̂) = {Di}Ii=1 and D(R̂′) = {D′i}Ii=1, and
2. F = {Fi}Ii=1 is marking-preserving Möbius conjugate to G = {Gi}Ii=1 by the

above {Ti}Ii=1, i.e., Gi = Ti ◦ Fi ◦ T−1i for every i.

A dynamical structure of a marked rational function (F , R̂, ι) with nodes is the

marking-preserving Möbius conjugacy class of it, which is denoted by [F , R̂, ι].
Note that the reduced index decoration Λ# is well-defined for the class [F , R̂, ι].

The virtual moduli space of rational functions with nodes of type d is the set of
the dynamical structures of all marked rational functions with nodes of type d,
and is denoted by VMd. The sublocus of VMd corresponding to usual rational
functions of degree d is called the virtual moduli space of degree d and denoted
by VMd. Here, we regard that VMd contains the “empty” point, i.e. the point
∞ = [∅, ∅, ∅].
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Finally, we introduce a standard kind of topology on VMd. For this purpose,
we use the reduced realization R̂# of R̂, which is obtained from R̂∗ by filling all
singular punctures in the same singular bouquet B by a single point q for every
B. Every attached point q is called a singular node, which is distinguished from
other ordinary points, even if B consists of a single singular puncture. We attach
to R̂# the marking induced from that of R̂, by replacing singular bouquets to
singular nodes. Note that, even if R̂∗ is disconnected, R̂# is always connected.

Definition 1.11 (Carathéodory convergence). We say that points [Fk, R̂k, ιk]

converge to [F , R̂, ι] in VMd in the sense of Carathéodory as k → ∞ if there

is an admissible sequence of continuous surjections fk : R̂#
k → R̂# such that

Fi,k ◦ f−1k converge to Fi spherically uniformly on Di − U for every ordinary

component Di of R̂ and every neighborhood U of N(R̂)
⋃
S(R̂), where Fi,k is a

suitable rational function marking-preserving Möbius conjugate to the element
in Fk defined on the ordinary component Di,k of R̂k containing f−1k (Di), and

S(R̂) is the set of all singular nodes of R̂.

Here, we say that a sequence {fk : R̂#
k → R̂#} is admissible if

1. f−1k is a homeomorphism of Di into an ordinary component of R̂k for every

k and every ordinary component Di of R̂,
2. f−1k (p) is either a non-singular node of R̂∗k or a simple closed curve on an

ordinary component of R̂k for every k and every non-singular node p of R̂∗,
3. the relative boundary of f−1k (R̂∗) in R̂∗k consists of a finite number of

non-singular nodes and simple closed curves on ordinary components, and
f−1k (p) is a connected component of R̂#

k − f
−1
k (R̂∗) for every k and every

p ∈ S(R̂),

4. the surjection f#
k : X(R̂k)→ X(R̂) induced by fk satisfies that f#

k ◦ ιk = ι
for every k, and

5. for every neighborhood V of the set of all punctures of R̂ and every positive
ε, f−1k is a (1 + ε)-quasiconformal map of |D|(R̂)− V for every sufficiently
large k.

Definition 1.12 (Strong convergence). We say that [Fk, R̂k, ιk] converge strongly

to [F , R̂, ι] in VMd as k →∞ if [Fk, R̂k, ιk] converge to [F , R̂, ι] in the sense of

Carathéodory as k →∞ and if [F , R̂, ι] is maximal in the sense that, if a subse-

quence of [Fk, R̂k, ιk] converges to another [G, R̂′, ι′] in the sense of Carathéodory

as k →∞, then [G, R̂′, ι′] is subordinate to [F , R̂, ι], i.e., we can find a continuous

surjection φ : R̂# → (R̂′)# such that

1. φ−1 is a conformal map of D′i onto an ordinary component of R̂ for every

ordinary component D′i of R̂′.
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2. φ−1(p) is a non-singular node of R̂∗ for every non-singular node p of (R̂′)∗,

3. the relative boundary of φ−1((R̂′)∗) in R̂∗ consists of a finite number of non-

singular nodes and φ−1(p) is a connected component of R̂#−φ−1((R̂′)∗) for

every p ∈ S(R̂′), and

4. the surjection φ# : X(R̂)→ X(R̂′) induced by φ satisfies that φ# ◦ ι = ι′.

Remark 1.13. Roughly speaking, if [Fk, R̂k, ιk] in VMd converge strongly to

[F , R̂, ι] as k → ∞ if and only if Fk converges to the identity function or not,

respectively, exactly on the crushed components or on the ordinary ones of R̂.

In general, there might be “superfluous” singular nodes of such [G, R̂′, ι′] as
above.

By using strong convergence, we can introduce a topology on VMd, and con-
clude the following result. The proofs of all the assertions stated below will be
given in the next section.

Theorem 1.14. VMd is a compact Hausdorff space.

Definition 1.15 (Degree). We call the closure of GVMd in VMd the virtual
moduli space of rational functions with nodes of degree d, and is denoted by

V̂ Md. We say that a marked rational function (F , R̂, ι) with nodes is of degree

d for every [F , R̂, ι] in V̂ Md.

Theorem 1.16. The virtual moduli space V̂ Md of rational functions with nodes

of degree d is compact, and the natural inclusion map of GVMd into V̂ Md can

be extended to a continuous injection ρ : VMd → V̂ Md with dense range.

Here, we note the following fact.

Lemma 1.17. Every marked rational function (F , R̂, ι) with nodes of type d such

that the realization R̂∗ is connected is of degree d.

Example 1.18. Suppose that points [Pk] in VMd represent the classes of poly-

nomials Pk of degree d, and ρ([Pk]) converge to [F , R̂, ι] in V̂ Md. Then, every

Fm in F defined on an ordinary component Dm of R̂ is either Möbius conjugate
to a polynomial or to a constant.

In [3], we used F only to define the boundary point of such a sublocus of VMd.

Here, we also take the binding manner of them into account as R̂. Hence the
boundary of it constructed in this paper is larger than that in [3], and actually

a finite branched cover of that. Also note that the realization of R̂ is always
connected in this case.

Proposition 1.19. If d ≤ 5 then VMd = V̂ Md.
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Finally, we will give an example (Example 2.3) in the next section which shows

that VMd − V̂ Md is non-empty for every d ≥ 6.

Problem 1.20. For d ≥ 6, find explicit conditions for rational function with
nodes of type d to be of degree d.

2. Proofs

Proof of Theorem 1.14. It is easy to see that VMd is Hausdorff and satisfies
the second countability axiom, and hence it suffices to show sequential compact-
ness of it. Thus, the next lemma implies the assertion.

Lemma 2.1. Let [Fk, R̂k, ιk] be a sequence in VMd. Then we can find a subse-
quence which converges in VMd.

Proof. We prove the assertion only for the case that all [Fk, R̂k, ιk] belong to

GVMd, and hence in particular, Fk and R̂k consist of a single function Fk,1
and a single component Dk,1, respectively, for every k. The general cases can
be treated similarly. Also, taking a subsequence if necessary, we may assume
that [R̂k] converge to the point corresponding to a ∂-marked (d + 1)-punctured

Riemann sphere Ŝ = (D(Ŝ), N(Ŝ)) with nodes in the standard compactification

V̂ Conf(d+ 1, Ĉ) of V Conf(d+ 1, Ĉ). (Cf., for instance, [1], [2], and [5].)

Fix a component Dm in D(Ŝ), and let {pr} be the set of all punctures of
Dm. Here, we may assume that {pr} ⊂ C. Furthermore, by taking a suitable
representatives of Dk,1 and a subsequence if necessary, we may assume that j-th
punctures pk,j of Dk,1 converge to one of pr for every j. Let Y (pr) be the set of
all j such that pk,j converge to pr and L′(pr) is the number of such j for every
pr.

Again taking a subsequence if necessary, we may assume that, if L′(pr) = 1,

then the indices Λk(j) of Fk,1 at pk,j converge to a value, say Λ(pr), in Ĉ, where
j is the unique element of Y (pr), and if L′(pr) > 1, then∑

j∈Y (pr)

Λk(j)

z − pk,j
tend to

L′(pr)∑
`=1

c`,r
(z − pr)`

with respect to the global coordinate z on Dm, where some of c`,r might be ∞.
We define a rational function Fpr by setting

1

z − Fpr(z)
=

L′(pr)∑
`=1

c`,r
(z − pr)`

,

where we regard that Fpr is the identity function id. when some of c`,r are ∞.
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If there exists either∞ among Λ(pr) or id. among Fpr on Dm, then we classify
the component Dm as a crushed one, and if not, as an ordinary one. Note
that this classification does not depend on the representative of Dm. Hence we
can define canonically a ∂-marked partially crashed (d+ 1)-punctured Riemann

sphere [Ŝ, R̂0] with nodes, where R̂0 = (D(R̂0), N(R̂0)) with D(R̂0) = {D′i}
consisting of all ordinary components in this classification. Then, every crushed
component should contain at least two punctures of Ŝ, for if not, no components
adjacent to it can be ordinary. Also, it is easy to construct an admissible family
of continuous surjections fk : R̂#

k = R̂k → R̂#
0 such that Fk,1 ◦ f−1k converges to

a rational function FD′i defined by

1

z − FD′i(z)
=

∑
L′(pr)=1

Λ(pr)

z − pr
+

∑
L′(pr)>1

1

z − Fpr(z)

locally uniformly on every D′i, where {pr} is as above with Dm = D′i.

Finally, let F be the set of all these FD′i on ordinary components D′i of R̂0.

Then it is easy to see that [Fk, R̂k, ιk] converge strongly to [F , R̂0, ι] with natu-
rally induced marking ι, and we have the assertion.

Next, we note the following fact.

Lemma 2.2. The natural inclusion map of GVMd into V̂ Md can be extended

canonically to a continuous injection ρ : VMd → V̂ Md.

Proof. Every point [F ] in VMd−GVMd corresponds to such an R̂ = (D(R̂), ∅)
that D(R̂) consists of a single marked punctured Riemann sphere, say D, and the
∂-marking ι is determined from F . Here, multiple fixed points of F correspond to
singular punctures of R̂ and every singular bouquet consists of a single singular
puncture. The level of every singular puncture p equals the multiplicity of the
fixed point of F at p.

Now, we set ρ([F ]) to be the point [{F}, R̂, ι] of VMd. Then from the con-

struction, the realization R̂∗ is connected. Hence Lemma 1.17, which is proved

next but independently, implies that ρ([F ]) is contained in V̂ Md. From the
definition of topology, it is easy to conclude that the map

ρ : VMd → V̂ Md

defined above is a continuous injection.

Proof of Theorem 1.16. Denseness of ρ(VMd) in V̂ Md is trivial from the def-

inition of V̂ Md, and we conclude Theorem 1.16 by Theorem 1.14 and Lemma
2.2.
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Proof of Lemma 1.17. Suppose that a marked rational function (F , R̂, ι) with

nodes of type d admits a connected realization R̂∗. Then, every singular bouquet
B` consists of a single singular puncture, say q`.

Take a representative of the component containing q` such that q` = 0 and let
the reduced index decoration of F ∈ F corresponding to q` at 0 be (c1, · · · cL`),
where L` is the level of q`.

For every ε = {εν} with mutually distinct εν sufficiently near 0, let Fq`,ε =
Fq`,{εν}(z) be defined by

1

z − Fq`,ε(z)
=

L∑̀
ν=1

λν
z − εν

(
=
AL`−1z

L`−1 + · · ·+ A0∏
(z − εν)

)
,

where λν are non-zero and Aν depend on λν and εν . More precisely, Fq`,ε(z) can
be written as

1

z − Fq`,ε(z)
=

∑L`
ν=1 λν(z − ε1) · · ·

̂

(z − εν) · · · (z − εL`)∏L`
ν=1(z − εν)

=

∑L`
ν=1 λν(z

L`−1 − σ(1)
ν zL`−2 + σ

(2)
ν zL`−3 − · · ·+ (−1)L`−1σ

(L`−1)
ν )∏L`

ν=1(z − εν)
,

with the j-th elementary symmetric functions σ
(j)
ν of ε1, · · · ,

̂

εν , · · · , εL` . Here,̂

(z − εν) and

̂

εν mean the deletion of (z − εν) and εν , respectively. Hence Aν can
be expressed as

AL`−1
−AL`−2

...
(−1)L`−1A0

 =


1 1 · · · 1

σ
(1)
1 σ

(1)
2 · · · σ

(1)
L`

...
...

σ
(L`−1)
1 σ

(L`−1)
2 · · · σ

(L`−1)
L`




λ1
λ2
...
λL`

 .

Let M be the L` × L` matrix in the right hand side. Then we can show that

detM =
∏
µ<ν

(εµ − εν).

Hence, for mutually distinct {εν}, also {Aν} determines {λν} uniquely. Actually,
the inverse matrix of M is(

(−1)j−1εL`−jk

∆k

)
with ∆k =

∏
ν 6=k

(εk − εν).
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Now, take mutually distinct {εν} arbitrarily near 0 and fix suitable values
{(−1)ν−1AL`−ν} arbitrarily near {cν} so that the solution {λν} determined from
them consists of non-zero values only. Let Fq`,ε be defined as above with these
εν and λν for every q`.

For every component D of R̂, let {pD,r} and {qD,`} be the sets of all non-
singular punctures and of all singular ones, respectively, of D. Then after taking
suitable conjugates of FqD,`,ε if necessary, we have a generic rational function FD,ε
on D defined by

1

z − FD,ε(z)
=
∑
{pD,r}

λ′pD,r
z − pD,r

+
∑
{qD,`}

1

z − FqD,`,ε(z)
.

Here λ′pD,r are non-zero values arbitrarily near to the indices λpD,r of the corre-
sponding element of F at pD,r, which satisfy the index relation:∑

{pD,r}

λ′pD,r +
∑
{qD,`}

AqD,`,L`−1
= 1,

where AqD,`,L`−1 is AL`−1 for qD,` as above for every qD,`. Set Fε = {FD,ε}, where

D moves all components of R̂, and we obtain points [Fε, R̂, ι] arbitrarily near to

the given [F , R̂, ι] in VMd.

Now by a standard surgery by reopening non-singular nodes, we can approx-
imate such [Fε, R̂, ι] arbitrarily by points in GVMd, which implies that (F , R̂, ι)
is of degree d, and we have proved Lemma 1.17.

Proof of Proposition 1.19. When d ≤ 4, it is easy to see that there are no
partially crushed (d+ 1)-punctured Riemann sphere R̂ with nodes such that the

realization of R̂ is disconnected. Thus Proposition 1.19 follows from Lemma 1.17.

Suppose that d = 5, and let R̂ be a partially crushed 6 punctured Riemann
sphere with nodes such that the realization of R̂ is disconnected. Then there is
essentially only one possibility for R̂, namely, R̂ is obtained from 6 punctured
Riemann sphere Ŝ = ({D1, D2, D3}, N(Ŝ)) with two nodes, which connect D3

with D1 and with D2, by crushing D3. Hence, the single singular bouquet B of
R̂ consists of two punctures of D1 and D2, and the levels of them are 2. We may
assume that D1 = D2 = C−{0, 1}, and 0 corresponds to the singular punctures.

Let [F , R̂, ι] be any point in VM5, and (λj1, λ
j
2; (cj1, c

j
2)) be the reduced index

decoration on Dj corresponding to F for each j. Then cj1 is determined from λj1
and λj2 by the index relation on Dj. For every k, we consider a generic rational
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function Fk of degree 5 defined by

1

z − Fk(z)
=

λ̃1k,1
z + 2

+
λ̃1k,2

z + 2− εk,1
+

λ̃2k,1
z − 2

+
λ̃2k,2

z − 2− εk,2
+
c̃k,1
z

+
c̃k,2
z − 1

,

where the fixed points 0, (−1)j 2, (−1)j 2 + εk,j correspond to punctures 0,∞, 1
of Dj for each j and every k, λ̃jk,ν and c̃k,` are non-zero and satisfy that∑

j,ν

λ̃jk,ν +
∑
`

c̃k,` = 1,

for every k, and εk,j converge to 0 for each j and λ̃jk,ν tend to λjν for every j and
ν as k →∞. Since D3 is crushed, we should choose c̃k,` so that they tend to ∞.

Now, we set

εk,j =
ajk
k2

with bounded non-zero ajk for every k and j, which are determined below. Take
the conformal embeddings of C− {0, 1,±2, (−1)j2 + εk,j} into C− {0, 1} which
fix 0 and send (−1)j2 and (−1)j2 + εk,j to ∞ and 1, respectively, and hence are
the Möbius transformations

Sk,j(z) = µk,j
z

z − (−1)j2
with µk,j =

εk,j
(−1)j2 + εk,j

≈ εk,j
(−1)j 2

.

(Here and in the sequel, ak ≈ bk means limk→∞ ak/bk = 1.) Note that

c̃k,1 + c̃k,2 ≈ c11 + c21 − 1 = 1−
∑
j,ν

λjν , and c̃k,1Sk,j(1) ≈ −cj2.

Now, if cj2 is non-zero, then we set bjk = −cj2, and if not, then we set bjk = 1/k,

for every k and each j. Then we can find bounded non-zero values ajk which
satisfy the equation

bk,1
Sk,1(1)

=
bk,2

Sk,2(1)

which we take as c̃k,1 for every k. Here note that, if b2k = o(b1k), for instance, then

we can take such ajk that a2k = o(a1k) and hence εk,2 = o(εk,1).

These Fk determine the points in GVMd with the marking induced from
above. By construction, c̃k,` tend to∞, and hence we can see that they converge

to [F̂ , R̂, ι] as k →∞. Thus we conclude the assertion.

Finally, we show that Proposition 1.19 is best possible. Actually, VMd−V̂ Md

is non-empty for every d ≥ 6.
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Example 2.3. For the sake of simplicity, we consider the case d = 6 only, for
the other cases can be treated by the same arguments. Let [G, R̂, ι] be a point

in VM6, where R̂ = ({D1, D2}, N(R̂)) is as in the proof of Proposition 1.19, i.e.,

R̂∗ is disconnected and Dj (j = 1, 2) are C− {0, 1}, whose punctures at 0 are in
the same singular bouquet, which is of level 3 in this case. We set G = {G1, G2},
where Gj are defined by

1

z −Gj(z)
=

2

z − 1
− 1

z
+

(−1)j

z2
+

1

z3
.

Then [G, R̂, ι] ∈ VM6 − V̂ M6.

Indeed, if not, then it is the limit of a suitable sequence of points in V GM6

determined by generic rational functions Fk of degree 6. By taking a Möbius
conjugate if necessary, we may assume that such Fk are given by

1

z − Fk(z)
=

ηk,1
z + 2

+
κk,1

z + 2− εk,1
+

ηk,2
z − 2

+
κk,2

z − 2− εk,2

+
λk,1
z

+
λk,2
z − δk

+
λk,3
z − δ′k

,

where ∑
j

(ηk,j + κk,j) +
∑
ν

λk,ν = 1,

κk,j and εk,j are non-zero and tend to 0, while ηk,j tend to 2, as k →∞ for each j,
and λk,ν tend to ∞ as k →∞ for some ν. Also, δk and δ′k are mutually distinct,
equal none of {0,±2, (−1)j 2 + εk,j}, and may be assumed to converge to finite
values, say a and a′, respectively. Note that a, a′ may belong to {0,±2}.

Now, we may assume that the marking-preserving conformal embeddings of

C− {0,±2, δk, δ
′
k, (−1)j 2 + εk,j}

into C−{0, 1} fix 0 and send (−1)j 2 and(−1)j 2 + εk,j to∞ and 1, respectively,
and hence are again given by Möbius transformations Sk,j(z) defined in the proof
of Proposition 1.19.

From the assumption, we may assume without loss of generality, that Sk,j(δk)
and Sk,j(δ

′
k) converge to 0 for each j,

∑
ν λk,ν = −3 for every k, and Gk,j defined

by

1

z −Gk,j(z)
=

λk,1
z

+
λk,2

z − Sk,j(δk)
+

λk,3
z − Sk,j(δ′k)

+
2

z − 1
+

2

z − Sk,j((−1)3−j 2 + εk,3−j)
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converge to Gj for each j as k →∞. Set

λk,1
z

+
λk,2

z − Sk,j(δk)
+

λk,3
z − Sk,j(δ′k)

=
−3z2 + bk,jz + ak,j

z(z − Sk,j(δk))(z − Sk,j(δ′k))
,

and write Sk,j(δk) and Sk,j(δ
′
k) simply as Sk,j and S ′k,j. Then simple computations

show that

λk,1 =
ak,j

Sk,jS ′k,j
,

λk,2 =
−ak,j − bk,jSk,j + 3S2

k,j

Sk,j(S ′k,j − Sk,j)
,

λk,3 =
ak,j + bk,jS

′
k,j − 3(S ′k,j)

2

S ′k,j(S
′
k,j − Sk,j)

.

Here recall that (ak,j, bk,j) converge to (1, (−1)j) for each j.

Now, by the first equation, we have

ak,1
Sk,1S ′k,1

=
ak,2

Sk,2S ′k,2
,

or more precisely,

µ2
k,1

ak,1(δk + 2)(δ′k + 2)
=

µ2
k,2

ak,2(δk − 2)(δ′k − 2)
.

Hence

Sk,1(S
′
k,1 − Sk,1)
ak,1

=
µ2
k,1

ak,1

δk
δk + 2

2(δ′k − δk)
(δk + 2)(δ′k + 2)

=
2− δk
2 + δk

µ2
k,2

ak,2

δk
δk − 2

−2(δ′k − δk)
(δk − 2)(δ′k − 2)

=
2− δk
2 + δk

Sk,2(S
′
k,2 − Sk,2)
ak,2

.

Here, a rough estimate of the equation for λk,2 shows that

λk,2 ≈
−ak,1

Sk,1(S ′k,1 − Sk,1)
≈ −ak,2
Sk,2(S ′k,2 − Sk,2)

.

Thus
2 + δk
2− δk

≈ 1, i.e., δk → 0.
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Since ak,j → 1 and δk 6= 0, we conclude that

−ak,1
Sk,1(S ′k,1 − Sk,1)

− −ak,2
Sk,2(S ′k,2 − Sk,2)

≈ −2δk
2− δk

−ak,1
Sk,1(S ′k,1 − Sk,1)

,

which is non-zero and not
o(δk)

Sk,1(S ′k,1 − Sk,1)
as k →∞.

On the other hand, since

Sk,j = O(εk,jδk) = o(δk),

we should have

0 =
−ak,1 − bk,1Sk,1 + 3S2

k,1

Sk,1(S ′k,1 − Sk,1)
−
−ak,2 − bk,2Sk,2 + 3S2

k,2

Sk,2(S ′k,2 − Sk,2)

=
(−ak,1 + o(δk))

Sk,1(S ′k,1 − Sk,1)
− (−ak,2 + o(δk))

Sk,j(S ′k,2 − Sk,2)

=
−ak,1

Sk,1(S ′k,1 − Sk,1)
− −ak,2
Sk,j(S ′k,2 − Sk,2)

+
o(δk)

Sk,1(S ′k,1 − Sk,1)
,

which is a contradiction.

Remark 2.4. The condition that the “last” components in the reduced index
decorations at 0 are non-zero is crucial.

Also note that, even if we consider to approximate [G, R̂, ι] by points in
VMd − GVMd corresponding to the condition that δk = δ′k = 0, we still have
a contradiction more easily. Actually, if the approximating functions Hk are
defined by

1

z −Hk(z)
=

ηk,1
z + 2

+
κk,1

z + 2− εk,1
+

ηk,2
z − 2

+
κk,2

z − 2− εk,2

+
λk,1
z

+
λk,2
z2

+
λk,3
z3

,

where
∑

j (ηk,j + κk,j) + λk,1 = 1 and ηk,j and κk,j tend to 2 and 0, respectively,
as k →∞, then the corresponding Gk,j as before can be defined by

1

z −Gk,j(z)
= −3

z
− εk,j(λk,2 + (−1)j2λk,3)

4z2
+
ε2k,jλk,3

4z3

+
2

z − 1
+

2

z − Sk,j((−1)2−j 2 + εk,2−j)
,
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which should converge to Gj for each j as k →∞. But this is again impossible.
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