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Abstract. The paper is first in the sequel of investigation of Hilbert pro-
C∗-modules. The main objective of the current paper is to develop the tools
for operators on a locally Hilbert space. We remove the bottleneck to de-
fine the compact operators on a locally Hilbert space by avoiding the spatial
intervention of mapping bounded sequences to the ones having convergent sub-
sequence. This is at the cost of losing the simplicity of K(H). We also define
the classes of algebras of operators, like trace class, Hilbert Schmidt operators,
Schatten class operators in general, and compact operators. All of these are
complete lmc ∗-algebras. In passing we develop the polar decomposition of an
operator on a locally Hilbert space.

Keywords. Locally Hilbert space, locally m-convexH∗-algebra, pro-C∗-algebra.

2010 MSC. Primary 46L05; Secondary 46K10.

1. Introduction and preliminaries

A topological algebra is a topological vector space A, which also has a ring
multiplication compatible with the vector space operations such that the ring
multiplication is jointly continuous. A topological algebra with a continuous
involution x ∈ A 7→ x∗ ∈ A is a topological ∗-algebra. A locally m-convex ∗-algebra
(lmc ∗-algebra) is a topological ∗-algebra, the topology of which is generated by
a separating family Γ(A) of submultiplicative ∗-seminorms. An lmc-algebra A
is called proper if for x ∈ A, Ax = 0 implies x = 0. For p ∈ Γ(A), Np =
{x ∈ A : p(x) = 0} is a closed ∗-ideal of A. Ap denotes the completion of
(A/Np, |∥ · ∥|p), where |∥x+Np∥|p = p(x), x ∈ A. πp : A → Ap, πp(x) = x +Np

is a continuous ∗-homomorphism. We denote x+Np by xp. A seminorm p on A is
a C∗-seminorm if p(x∗x) = p(x)2. A pro-C∗-algebra is a complete lmc ∗-algebra,
the topology of which is generated by a family of C∗-seminorms. In this case, the
family of all continuous C∗-seminorms is denoted by S(A) and for each p ∈ S(A),
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Ap = A/Np [9]. For p ≤ q, πpq : Aq → Ap, defined by πpq(xq) = xp is a surjective
C∗-morphism. From [9], A = lim←−−−−−

p∈S(A)

Ap. A pro-C∗-algebra is said to be simple

if {0} and A are its only closed ideals. An element x of a pro-C∗-algebra A is
called positive if x = x∗ and sp(x) ⊂ [0,∞), where sp(x) denotes the spectrum
of x. Also, we denote |x| = (x∗x)1/2. In the set up of non-normed topological ∗-
algebras, inverse limits of C∗-algebras have been extensively studied by Phillips
[9], Fragoulopoulou [4], and Bhatt and Karia [1], [2], [3] and Karia [7] under
various names like inverse limits of C∗-algebras, locally C∗-algebras and pro-C∗-
algebras. Basically the objects of a pro-C∗-algebra are unbounded. A locally
m-convex H∗-algebra is a locally m-convex algebra whose topology is generated
by a family Γ(A) of submultiplicative seminorms each of which is induced by a
pseudo inner product, i.e., for all p ∈ Γ(A), there exists a pseudo inner product
(·, ·)p such that p(x)2 = (x, x)p and for any x ∈ A there is an x∗ ∈ A such that
(xy, z)p = (y, x∗z)p, (yx, z)p = (y, zx∗)p for every y, z ∈ A and p ∈ Γ(A). The
element x∗ (not necessarily unique) is called an adjoint of x. If A is proper, then
x∗ is unique and the correspondence x 7→ x∗ (on A) defines an involution on A [5,
Theorem 1.3]. For a complete locally m-convex H∗-algebra A, Ap, p ∈ Γ(A), is
a proper Banach algebra, having therefore a continuous involution. In this case
A = lim←−−−−−

p∈Γ(A)

Ap [5, Theorem 2.3]. Locally m-convex H∗-algebras are investigated

by Haralampidou [5].

In the case of pro-C∗-algebra A, the representation of A into bounded linear
operators is disadvantageous losing a lot of information of elements of such an
algebra due to their inherent unboundedness. For this reason, [3] develops the
representation theory of pro-C∗-algebras into unbounded operators. Realizing
a pro-C∗-algebra A as an inverse limit of C∗-algebras, representation theory of
pro-C∗-algebra A has been studied by Inoue [6], embedding A into a closed ∗-
subalgebra L(H) of all operators on a locally Hilbert space H. Throughout this
note H will denote a locally Hilbert space and H will denote a classical Hilbert
space and BL(H) will denote the classical operator algebra of all bounded linear
operators on H. While investigating the Hilbert pro-C∗-modules in our further
program, we need to develop certain concepts in L(H). We do it in this paper.
We investigate L(H) in Section 2 and decompose the operators in L(H), using
Arens-Michael decomposition, making them more friendly with the inverse limit.
In doing so we also repair a gap found in Arens-Michael decomposition of L(H) in
[4, Remarks(i), pp. 107–108]. In literature the Hilbert C∗-modules over K(H),
the C∗-algebra of compact operators on a Hilbert space H, have found many
applications. Many results from the theory of Hilbert C∗-modules over K(H)
have been proved using the theory of Hilbert modules over theH∗-algebra C 2(H),
the algebra of Hilbert Schmidt operators on a Hilbert space H. We extend the
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idea of compact operators in Section 3, that also includes the atomic part of
compact operators viz. the rank one operators and minimal projections in the
set up of locally Hilbert spaces. In Section 4 we obtain the polar decomposition
of an operator on a locally Hilbert space by exploiting the inverse limit system.
Finally, in Section 5 we introduce the Schatten class operators and recapture the
classical inclusion of finite rank operators sitting in Schatten class-1, trace class
operators, which in turns sits in Schatten class-2, the Hilbert Schmidt operators.
Continuing this program, in the sequel we intend to investigate Hilbert pro-C∗-
modules over K(H) and C 2(H), orthogonality preserving mappings on a Hilbert
pro-C∗-modules, Wigner’s theorem for Hilbert pro-C∗-modules.

2. The Algebra L(H)

We denote the norm on the Hilbert space H by ∥ · ∥H and the operator norm
on BL(H) by ∥ · ∥. Let Λ be a directed set and for each α ∈ Λ, let Hα be a
Hilbert space with inner product (·, ·)α. We assume that the family {Hα}α∈Λ of
Hilbert spaces satisfies Hα ⊂ Hβ and (·, ·)α = (·, ·)β on Hα whenever α ≤ β. Fix
H = ∪α∈ΛHα, a vector space with the following topology.

Definition 2.1. [6] X ⊂ H is closed in H if either X = H or there exists α ∈ Λ
such that X is closed in Hα. H, topologized in this way, is called a locally Hilbert
space.

It is known [6, Lemma 5.1] that the topology described above is making H a
T1 topological space. H is nothing but the inductive limit of {Hα}α∈Λ.

For a linear operator T : H → H, T|Hα is denoted by Tα for every α ∈ Λ.
For α ≤ β, Hα, being a closed subspace of Hβ, gives rise to an orthogonal
projection Pαβ from Hβ onto Hα. In what follows by an operator on H, we mean
a continuous linear T : H → H satisfying PαβTβ = TβPαβ whenever α ≤ β. The
class of such operators is denoted by L(H); that is, L(H) = {T : H → H : T is
continuous, linear and PαβTβ = TβPαβ, whenever α ≤ β}. The point here is that
Hα as well as H⊥α in Hβ are invariant under Tβ whenever α ≤ β. Consequently,
T ∈ L(H) if and only if

(1) Tα ∈ BL(Hα) for each α ∈ Λ,
(2) Hα reduces Tβ for every α ≤ β; i.e., Hα and H⊥α (in Hβ) are invariant

under Tβ.

The following is proved in [6, §5]; we provide the undocumented part of the
proof, this includes mainly the completeness of L(H).

Theorem 2.2. L(H) is a pro-C∗-algebra with the topology generated by the fam-
ily of seminorms pα(T ) = ∥Tα∥α, where ∥ · ∥α denotes the operator norm on
BL(Hα).
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Proof. Let T ∈ L(H). Since Tα ∈ BL(Hα), T
∗
α ∈ BL(Hα) for every α ∈ Λ.

Since PαβTβ = TβPαβ for α ≤ β and Pαβ is a projection, we get T ∗βPαβ = PαβT
∗
β

for α ≤ β. Consequently, T ∗β (Hα) ⊂ Hα for every α ≤ β. For ξ and η ∈ Hα we
have,

(T ∗β (ξ), η)β = (ξ, Tβ(η))β = (ξ, Tα(η))α = (T ∗α(ξ), η)α.

Therefore, T ∗β (ξ) = T ∗α(ξ) for each ξ ∈ Hα. This defines the involution T ∈
L(H) 7→ T ∗ ∈ L(H). Since ∥ · ∥α is a C∗-norm on BL(Hα), we conclude that pα
is a C∗-seminorm on L(H) for each α ∈ Λ.

To prove the completeness of L(H), let (Ti)i∈I be a Cauchy net in L(H) and
α ∈ Λ. Then (Tiα = Ti|Hα

)i∈I is a Cauchy net in BL(Hα). Since BL(Hα) is
complete, there is T(α) ∈ BL(Hα) such that ∥Tiα − T(α)∥α → 0. Thus, for each
α ∈ Λ we have T(α) ∈ BL(Hα). Now, let α, β ∈ Λ be such that α ≤ β and
ξ ∈ Hα. Then

(2.1) PαβT(β)(ξ) = lim
i
PαβTiβ(ξ) = lim

i
TiβPαβ(ξ) = T(β)Pαβ(ξ).

So, this defines T ∈ L(H) such that Tα = T(α) and pα(Ti − T ) → 0 for every
α ∈ Λ. Thus, Ti → T . Therefore L(H) is complete.

We record here that T ∈ L(H) 7→ Tα is a ∗-homomorphism for every α ∈ Λ.
By [9] L(H)α = L(H)/Nα is complete for every α ∈ Λ, where Nα = ker pα.
Consequently, L(H) = lim←−−

α∈Λ
(L(H)α, |∥ · ∥|α), where |∥T +Nα∥|α = pα(T ).

Proposition 2.3. (L(H)α, |∥ · ∥|α) is isometrically ∗-isomorphic to a closed ∗-
subalgebra of BL(Hα) for every α ∈ Λ.

Proof. Clearly, for each α ∈ Λ, the map θα : L(H)α → BL(Hα), defined by
θα(T +Nα) = T|Hα , (T ∈ L(H)) is a ∗-isomorphism satisfying ∥θα(T +Nα)∥α =
∥Tα∥α = pα(T ) = |∥T +Nα∥|α for every α ∈ Λ.

Regarding L(H)α as a closed subalgebra of BL(Hα), now onwards we shall
denote T +Nα as Tα itself and |∥ · ∥|α as ∥ · ∥α.

In [4, Remark (i), pp 107-108], it is proved that L(H) = lim
←−

BL(Hα) up to a

topological ∗-isomorphism. The result has, in fact, a gap. An inadvertent error
in the proof claims that the above map θα is onto for each α ∈ Λ. The following
provides a counter example to this showing that the map θα is not surjective in
general.

Example 2.4. Let H1 = C × {0} × {0}, H2 = C2 × {0} and H3 = C3. Then
H1 ⊂ H2 ⊂ H3 and H = ∪3

i=1Hi is a locally Hilbert space. Clearly H = C3 as
a vector space. We first describe L(H). Let (x, y, z) ∈ C3. Then (x, y, z) =
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x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1). Fix T ∈ L(H). Assume that T (1, 0, 0) =
(a, b, c), T (0, 1, 0) = (d, e, f) and T (0, 0, 1) = (g, h, i). Then T (x, y, z) = (ax +
dy + gz, bx+ ey + hz, cx+ fy + iz). Now,

(ax+ dy, bx+ ey, cx+ fy) = T3P23(x, y, z)

= P23T3(x, y, z)

= (ax+ dy + gz, bx+ ey + hz, 0).

Hence, gz = 0, hz = 0 and cx + fy = 0, giving g = h = 0. Similarly, from
P12T2 = T2P12, we get d = b = 0. Therefore, T (x, y, z) = (ax, ey, iz). Thus,

L(H) = {T : C3 → C3 : T (x, y, z) = (ax, by, cz); a, b, c ∈ C}.
Let S ∈ BL(H2) be defined by S(x, y, 0) = (y, x, 0). If θ2 : L(H)2 → BL(H2) is
onto, then there exists T ∈ L(H) such that T2 = θ2(T + N2) = S and T2|H1

=
S|H1 = T1. But T2(x, 0, 0) = (0, x, 0) ̸∈ H1, a contradiction. Thus, θ2 cannot be
onto.

Let α ∈ Λ. Set Lα = span(∪β<αHβ) and Kα = (Lα)
⊥ in Hα. Clearly,

Hα = Lα ⊕ Kα. Also notice that for any γ < α, Kγ is a closed subspace of
Lα. Therefore, ⊕γ<αKγ = Mα (say) is also a closed subspace of Lα. Thus,
Lα = Mα ⊕ Jα, where Jα = M⊥

α in Lα. The following is straightforward

Lemma 2.5. For any α ∈ Λ, Hα = Mα ⊕ Jα ⊕Kα.

Theorem 2.6. Let T ∈ L(H). Then for any α ∈ Λ, Tα = T|Hα = TMα ⊕TJα ⊕TKα ,
where TMα = T|Mα, T

J
α = T|Jα and TKα = T|Kα.

Proof. First we show that T keeps Kα invariant for every α ∈ Λ. Indeed let
α ∈ Λ and ξ ∈ Hα. Then ξ = ξMα ⊕ ξKα ⊕ ξJα , where ξMα ∈ Mα, ξ

K
α and ξJα ∈ Jα.

Since T is continuous and for any β < α, Hβ is a reducing subspace of Hα

with respect to Tα, we have Tα(Mα) ⊂ Mα, Tα(Kα) ⊂ Kα. Consequently,
T (Jα) ⊂ Jα. Thus,

Tα(ξ) = Tα(ξ
M
α ⊕ ξJα ⊕ ξKα )

= Tα(ξ
M
α )⊕ Tα(ξ

J
α )⊕ Tα(ξ

K
α )

= (TMα ⊕ TJα ⊕ TKα )(ξ).

This completes the proof.

Remark 2.7. In view of [6, Theorem 5.1] we can assume that Jα = {0} for all
α ∈ Λ. Consequently, we have the following.

Corollary 2.8. For any α ∈ Λ, Hα = Mα ⊕Kα = ⊕γ≤αKγ.

Summarizing all the above, we have the following.
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Theorem 2.9. Let T ∈ L(H). Then T = ⊕γ∈ΛT
K
γ and for any α ∈ Λ, Tα =

TMα ⊕ TKα = ⊕γ≤αT
K
γ , where TMα = T|Mα and TKα = T|Kα.

3. The Algebra K(H)

For a Hilbert space H, F (H) denotes the set of all finite rank operators on H,
and K(H) denotes the set of all compact operators on H. It is known that F (H)
is dense in K(H). We use this to define compact operators on a locally Hilbert
space H. We denote the class of finite rank operators that is, the operators
having finite dimensional range, on H by F (H). It is evident that F (H) is a ∗-
ideal of L(H). Suppose that E ∈ L(H) be a rank one operator. By Theorem 2.9,
E = ⊕γ∈ΛE

K
γ with exactly one EKβ ̸= 0. Since R(EKβ ) ⊂ R(E), there exist

ξβ, ηβ ∈ Kβ such that EKβ = ξβ ⊗ ηβ. Thus, pα(E) = ∥ξβ∥Hα
∥ηβ∥Hα

if β ≤ α,
otherwise zero. Conversely, it is easy to see that given an α ∈ Λ, and ξα, ηα ∈ Kα,
the linear map ξα ⊗ ηα : H → H defined by

ξα ⊗ ηα(ζ) = (ζα, ηα)αξα, (ζ ∈ H)

is of rank one and continuous, commuting with all Pβγ, for all β, γ ∈ Λ with
β ≤ γ. Here ζα is the component of ζ in Kα.

The following is apparent.

Lemma 3.1. Let ξα, ξ
′
α, ηα, η

′
α ∈ Kα and T ∈ L(H). Then the following hold.

(1) (ξα ⊗ ξ′α)(ηα ⊗ η′α) = (ηα, ξ
′
α)α(ξα ⊗ η′α).

(2) (ξα ⊗ ηα)
∗ = ηα ⊗ ξα.

(3) T (ξα ⊗ ηα) = T (ξα)⊗ ηα.
(4) (ξα ⊗ ηα)T = ξα ⊗ T ∗(ηα).

Remark 3.2. For a unit vector ξα ∈ Kα, ξα ⊗ ξα is a rank one projection.
Conversely, for each rank one projection E, there exists α ∈ Λ and a unit vector
ξα ∈ Kα such that E = ξα ⊗ ξα.

Theorem 3.3. F (H) is linearly spanned by the rank one projections.

Proof. If T ∈ F (H), then there exist α1, α2, . . . , αn such that T = ⊕i≤nT
K
αi
,

where TKαi
∈ BL(Kαi

). Since R(TKαi
) ⊂ R(T ) for all i ≤ n, TKαi

is a finite rank
operator on Hilbert space Kαi

for all i ≤ n. By [8, Theorem 2.4.6] TKαi
is linearly

spanned by rank one projections on Kαi
for all i ≤ n completing the proof.

We define K(H), the set of compact operators on a locally Hilbert space, to

be F (H). Since addition, scalar multiplication, multiplication and involution are
continuous in a pro-C∗-algebra, K(H) being a closure of an ideal, is a closed
∗-ideal in L(H). Let α ∈ Λ and K(H)α = K(H)/(Nα ∩ K(H)). Then it is
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easy to see that K(H) = lim
←−

K(H)α and that K(H)α ⊂ K(Hα) via θα|K(H)α , for

every α ∈ Λ. We know that the C∗-algebra of all compact operators on a Hilbert
space is simple, but in case of locally Hilbert space it is not true. The example
is provided below.

Example 3.4. Let H be as in Example 2.4. Then clearly K(H) = L(H).
Consider I = {T ∈ L(H) : T (x, y, z) = (ax, by, 0), a, b ∈ C}. Then I is a closed
∗-ideal of L(H). It is also proper as rank one projection (0, 0, 1) ⊗ (0, 0, 1) ̸∈ I.
Therefore, K(H) is not simple.

Along the line of C∗-algebra following [8], we define a minimal projection in
a pro-C∗-algebra.

Definition 3.5. Let A be a pro-C∗-algebra. A nonzero e ∈ A is said to be a
projection if e = e∗ = e2. Further, it is called a minimal projection if eAe = Ce.

Theorem 3.6. Let A be a pro-C∗-algebra. A nonzero e ∈ A is a minimal
projection if and only if for every p ∈ S(A) either ep = 0 or ep is a minimal
projection in Ap.

Proof. Let e ∈ A be a minimal projection, p ∈ S(A) and e ̸∈ Np. Since πp is
a ∗-homomorphism from A onto Ap, we have ep = πp(e

2) = (πp(e))
2 = ep

2 and
e∗p = (πp(e))

∗ = πp(e
∗) = ep. Also for ap ∈ Ap, epapep = πp(eae) = πp(λe) =

λπp(e) = λep, which gives epApep = Cep. Thus, ep is a minimal projection in
Ap. Conversely, let e ∈ A be such that for each p ∈ S(A) either ep = 0 or a
minimal projection in Ap. Let a ∈ A and p, q ∈ S(A), with p < q and ep ̸= 0.
Suppose epapep = λpep and eqaqeq = λqeq. Then λpep = epapep = πpq(eqaqeq) =
πpq(λqeq) = λqep. Thus, λp = λq = λ(say). We observe that if p and q are not
comparable and ep ̸= 0 ̸= eq, then we find s ≥ p, q to assert that λp = λs = λq.
Therefore, we get λ in C such that eae = λe. Thus, eAe = Ce. This completes
the proof.

Remark 3.7. It is known that minimal projections in BL(H) are rank one
projections. From the above Theorem and Theorem 2.9 it is clear that E ∈ L(H)
is a minimal projection if and only if there exist α ∈ Λ, and a unit vector ξα ∈ Kα

such that E = ξα ⊗ ξα.

Theorem 3.8. Let S ∈ L(H) be a selfadjoint operator. Then S = 0 if and only
if ESE = 0 for all minimal projections of L(H).

Proof. Fix α ∈ Λ and ξα, a unit vector of Kα. From Lemma 3.1 and the above
remark we have

0 = (ξα ⊗ ξα)S(ξα ⊗ ξα) = (ξα ⊗ ξα)(S(ξα)⊗ ξα) = (SKα (ξα), ξα)ξα ⊗ ξα.
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Therefore, (SKα (ξα), ξα) = 0. Since α ∈ Λ and ξα ∈ Kα are arbitrary, we have
(SKα (ξα), ξα) = 0 for all α ∈ Λ and ξα ∈ Kα. Since SKα is self adjoint, SKα = 0 for
all α ∈ Λ and hence S = 0.

4. Polar Decomposition in L(H)

Before we obtain the polar decomposition of an operator T ∈ L(H), we need
to define isometry on a locally Hilbert space. T ∈ L(H) is called an isometry
on a locally Hilbert space H if Tα is an isometry on Hα for every α ∈ Λ. The
following defines the partial isometry on a locally Hilbert space analogous to [8,
p-50].

Definition 4.1. Let H be a locally Hilbert space. T ∈ L(H) is said to be a
partial isometry if for each α ∈ Λ, Tα ∈ BL(Hα) is a partial isometry.

Theorem 4.2. Let T ∈ L(H). Then there exists unique partial isometry S ∈
L(H) such that T = S|T | and kerSα = kerTα for every α ∈ Λ. Moreover
S∗T = |T |.

Proof. Let T ∈ L(H). Fix α ∈ Λ. Define Sα
0 : |Tα|(Hα) → Hα by Sα

0 (|Tα|(ξ)) =
Tα(ξ). It is clear S

α
0 is linear. Also,

∥|Tα|(ξ)∥2Hα
= (|Tα|(ξ), |Tα|(ξ))α
= (|Tα|2(ξ), ξ)α
= (T ∗αTα(ξ), ξ)α

= (Tα(ξ), Tα(ξ))α

= ∥Tα(ξ)∥2Hα
.

Therefore, Sα
0 is well defined and is an isometry. Thus, it has a unique isometric

linear extension (also denoted by Sα
0 ) to |Tα|(Hα). Let Tα = Sα|Tα| be the polar

decomposition of Tα in BL(Hα), where

Sα =

{
Sα
0 on |Tα|(Hα),

0 on |Tα|(Hα)
⊥
.
It is apparent that kerSα = kerTα and Sα∗Tα =

|Tα|. Thus, we get Sα satisfying the above for every α ∈ Λ. Now we show that

Sβ
|Hα

= Sα and PαβS
β = SβPαβ whenever α ≤ β. If ξ ∈ Hα ∩ |Tβ|(Hβ)

⊥
, then

0 = Sβ(ξ) = Tβ(ξ) = Tα(ξ). Since kerSα = kerTα, we have Sα(ξ) = 0. Now

suppose ξ ∈ |Tβ|(Hβ) ∩ Hα. Then for some η ∈ Hβ, S
β(ξ) = Sβ

0 (|Tβ|(η)) =

Tβ(η) = Tα(η) = Sβ
0 (|Tα|(η)) = Sα(ξ). Therefore Sβ

|Hα
= Sα. To show that

PαβS
β = SβPαβ, it is enough to show that PαβS

β = SβPαβ on |Tβ|(Hβ). Let
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ξ = |Tβ|(η) for some η ∈ Hβ. Then η = ηα + η′, where ηα ∈ Hα and η′ ∈ H⊥α in
Hβ. Now for any α ≤ β,

PαβS
β(ξ) = Pαβ(S

β
0 (|Tβ|(ηα + η′)))

= Pαβ[S
β
0 (|Tβ|(ηα)) + Sβ

0 (|Tβ|(η′))]
= Pαβ(Tβ(ηα) + Tβ(η

′))

= Tβ(ηα)

= Tα(ηα)

= Sα
0 (|Tα|(ηα))

= Sβ
0 (|Tα|(ηα))

= Sβ
0 (|Tβ|(ηα))

= SβPαβ(ξ)

Therefore, SβPαβ = PαβS
β whenever α ≤ β. Hence, there is a unique S ∈ L(H)

such that Sα = S|Hα = Sα. Thus, S is a partial isometry. Since Tα = Sα|Tα| and
S∗αTα = |Tα| for every α ∈ Λ, we have T = S|T | and kerTα = kerSα for every
α ∈ Λ. This completes the proof.

5. Schatten Class Operators

Let T ∈ L(H). Let α ∈ Λ and Eα be an orthonormal basis of Hα. Then we
define the αth Hilbert Schmidt operator seminorm p2,α(T ) as

p2,α(T ) = ∥Tα∥2,α =

(∑
ξ∈Eα

∥Tα(ξ)∥2Hα

)1/2

,

where ∥Tα∥2,α is the Hilbert-Schmidt norm of Tα ∈ BL(Hα). Since Hilbert-

Schmidt norm of Tα is independent of choice of orthonormal basis of Hα [8], the
definition of p2,α(T ) is also independent of choice of orthonormal basis of Hα.
An operator T ∈ L(H) is said to be a Hilbert-Schmidt operator if p2,α(T ) < ∞
for every α ∈ Λ. We denote the class of such operators as C 2(H).

It is apparent that T ∈ C 2(H) implies Tα ∈ C 2(Hα) for every α ∈ Λ. Passing
onto ∥ · ∥2,α on BL(Hα), the following is easily verified.

Proposition 5.1. Let T, S ∈ C 2(H) and λ ∈ C. Then for every α ∈ Λ, following
hold.

(1) p2,α(T + S) ≤ p2,α(T ) + p2,α(S) and p2,α(λT ) = |λ|p2,α(T ).
(2) p2,α(T ) = p2,α(T

∗).
(3) pα(T ) ≤ p2,α(T ).
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(4) p2,α(TS) ≤ pα(T )p2,α(S) and p2,α(TS) ≤ p2,α(T )pα(S).

The following theorem puts C 2(H) in a proper perspective among non-normed
topological algebras.

Theorem 5.2. C 2(H) is a complete locally m-convex H∗-algebra with respect to
the topology generated by the family of Hilbert-Schmidt seminorms {p2,α}α∈Λ.

Proof. From Proposition 5.1, it is clear that {p2,α} is a separating family of
submultiplicative ∗-seminorm on C 2(H). Consequently, in view of definition
of C 2(H), C 2(H) is a locally m-convex ∗-algebra with respect to the topology
generated by {p2,α}α∈Λ. Defining (T, S)2,α = tr(T ∗αSα), T, S ∈ C 2(H), α ∈ Λ,
where tr(·) denotes the trace of an operator, it follows that (·, ·)2,α defines a
pseudo inner product on C 2(H) such that p2,α(T )

2 = (T, T )2,α, (TS, P )2,α =
(S, T ∗P )2,α and (ST, P )2,α = (S, PT ∗)2,α. To prove completeness of C 2(H), let
(Ti)i∈I be a Cauchy net in C 2(H) and α ∈ Λ. Then (Tiα = Ti|Hα

) is a Cauchy
net in C 2(Hα). Since C 2(Hα) is complete, there exists T(α) ∈ C 2(Hα) such that
∥Tiα − T(α)∥2,α → 0. Also, ∥Tiα − T(α)∥ ≤ ∥Tiα − T(α)∥2,α shows that (Tiα)i∈I is

a net in L(H)α which converges to T(α) ∈ BL(Hα). Since L(H)α is complete,
T(α) ∈ L(H)α. Thus for each α ∈ Λ we have T(α) ∈ L(H)α. Thus there exists
unique T ∈ L(H) such that Tα = T(α). Now, p2,α(T ) = ∥Tα∥2,α = ∥T(α)∥2,α < ∞
for every α ∈ Λ showing that T ∈ C 2(H). This completes the proof.

Let N2,α = {T ∈ C 2(H) : p2,α(T ) = 0}. Then it can be readily seen that
N2,α is closed ∗-ideal in C 2(H). Also, C 2(H)/N2,α ↪→ C 2(Hα) via θ2,α, where
θ2,α(T + N2,α) = Tα. The map θ2,α is a well-defined ∗-homomorphism because
N2,α ⊂ Nα. Denote the closure of θ2,α(C 2(H)/N2,α) in C 2(Hα) by C 2(H)α. From
Arens-Michael decomposition we have C 2(H) = lim←−−

α∈Λ
(C 2(H)α, ∥ · ∥2,α). Our next

aim is to show that C 2(H) ⊂ K(H) for a locally Hilbert space H.

Lemma 5.3. F (H) ⊂ C 2(H), where F (H) is the set of all finite rank operators
of L(H).

Proof. It is enough to show that C 2(H) contains every rank one operator of
L(H). Let T = ξβ ⊗ ηβ, ξβ, ηβ ∈ Kβ, β ∈ Λ be any rank one operator. Then

(5.1) p2,α(T ) =

(∑
ζ∈Eα

∥ξβ ⊗ ηβ(ζ)∥2Hα

)1/2

=

(∑
ξ∈Eα

∥(ζβ, ηβ)βξβ∥2Hα

)1/2

,

where Eα is an orthonormal basis of Hα, α ∈ Λ. Therefore,

p2,α(T ) =

{
∥ξβ∥Hβ

∥ηβ∥Hβ
, if β ≤ α

0 otherwise .
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Thus, p2,α(T ) < ∞ for every α ∈ Λ.

Remark 5.4. F (H) is a ∗-ideal of C 2(H).

Theorem 5.5. F (H) is dense in C 2(H) with respect to the topology generated
by the family of {p2,α}α∈Λ.

Proof. Let V = V (p2,α1 , ϵ1)∩V (p2,α2 , ϵ2)∩· · ·∩V (p2,αn , ϵn) be a basic neighbour-
hood in C 2(H), where V (p2,αi

, ϵi) = {U ∈ C 2(H) : p2,αi
(U) < ϵi}, 1 ≤ i ≤ n,

and T ∈ C 2(H). Let ϵ′ = min
1≤i≤n

{ϵi} and ϵ = ϵ′/2. Let γ ∈ Λ be such

that αi ≤ γ, 1 ≤ i ≤ n. For β ≤ γ, let Gβ be an orthonormal basis of
Kβ. Since Hγ = ⊕β≤γKβ, ∪β≤γGβ = Eγ (say) is an orthonormal basis of

Hγ. Since Tγ ∈ C 2(Hγ), we have

( ∑
ζ∈Eγ

∥Tγ(ζ)∥2Hγ

)1/2

< ∞. Therefore,

there exists a finite set Fγ ⊂ Eγ such that
∑

ζ∈Eγ\Fγ

∥Tγ(ζ)∥2Hγ
< ϵ2. Define

S = SKα1
⊕ SKα2

⊕ · · · ⊕ SKαn
, where SKαi

= TKγ |span(Fγ∩Kαi )
, 1 ≤ i ≤ n. Then

SKαi
∈ F (Kαi

), 1 ≤ i ≤ n. Consequently, S ∈ F (H). Now for i, 1 ≤ i ≤ n,

observe that, p2,αi
(S − T )2 ≤ p2,γ(S − T )2 =

∑
ζ∈Eγ\Fγ

∥Tγ(ζ)∥2Hγ
< ϵ2. Thus,

p2,αi
(S − T ) < ϵ < ϵi, 1 ≤ i ≤ n, showing that S − T ∈ V . Therefore

S ∈ (T + V ) ∩ F (H). This completes the proof.

Remark 5.6. If T ∈ C 2(H), then there exists a net (Ti)i∈I of finite rank oper-
ators such that, for every α ∈ Λ, p2,α(Ti − T ) → 0. By Proposition 5.1 we have

pα(Ti − T ) → 0 for every α ∈ Λ. Thus T ∈ F (H) and hence compact. We have
C 2(H) ⊂ K(H).

For T ∈ L(H) and α ∈ Λ, we define p1,α(T ) as p1,α(T ) = (p2,α(|Tα|1/2))2. If
Eα is an orthonormal basis of Hα, then

p1,α(T ) =
∑
ζ∈Eα

∥|Tα|1/2(ζ)∥
2

Hα

=
∑
ζ∈Eα

(|Tα|1/2(ζ), |Tα|1/2(ζ)α

=
∑
ζ∈Eα

(|Tα|(ζ), ζ)α.

If p1,α(T ) < ∞ for every α ∈ Λ, then we call T a trace class operator. The
class of such operators is denoted by C 1(H). As a corollary to the following is a
known result.
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Lemma 5.7. [8, Lemma 2.4.12] Let H be a Hilbert space, U, V ∈ C 2(H), E
be an orthonormal basis of H and S = U∗V . Then the family ((S(x), x))x∈E is
absolutely summable. That is,∑

x∈E

|(S(x), x)| < ∞ and
∑
x∈E

(S(x), x) =
1

4

3∑
k=0

ik∥V + ikU∥22.

In fact, we have the following analogous result.

Corollary 5.8. Let U, V ∈ C 2(H) and S = U∗V . For every α ∈ Λ, let Eα

be an orthonormal basis of Hα. Then the family ((Sα(ξ), ξ))ξ∈Eα is absolutely
summable for every α ∈ Λ. That is, for every α ∈ Λ

∑
ξ∈Eα

|(Sα(ξ), ξ)α| < ∞ and

∑
ξ∈Eα

(Sα(ξ), ξ)α =
1

4

3∑
k=0

p2,α(Vα + ikUα)
2.

Proof. If U, V ∈ C 2(H), then Uα, Vα ∈ C 2(Hα) for every α ∈ Λ. Thus, by
Lemma 5.7 proof follows.

The connection between trace class operators and Hilbert-Schmidt operators
is given in the following result.

Theorem 5.9. Let S ∈ L(H). Then the following conditions are equivalent.

(1) S is a trace class operator.
(2) |S| is a trace class operator.
(3) |S|1/2 is a Hilbert-Schmidt operator.
(4) There exist Hilbert-Schmidt operators U, V on H such that S = UV .

Proof. (1) ⇒ (2). p1,α(|S|) = p1,α(S) < ∞ for every α ∈ Λ.
(2) ⇒ (3). Suppose that |S| is trace class. Let Eα be any orthonormal basis of
Hα for every α ∈ Λ.

p2,α(|Sα|1/2) =
∑
ζ∈Eα

∥|Sα|1/2(ζ)∥
2

Hα

=
∑
ζ∈Eα

(|Sα|1/2(ζ), |Sα|1/2(ζ))α

=
∑
ζ∈Eα

(|Sα|(ζ), ζ)α

= p1,α(|Sα|) < ∞.

Thus, |S|1/2 is a Hilbert-Schmidt operator.
(3) ⇒ (4). Let S = T |S| be polar decomposition of S, where T is a partial
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isometry. Then S = T |S|1/2|S|1/2. Since C 2(H) is an ideal of L(H), T |S|1/2 is a
Hilbert-Schmidt operator. Let U = T |S|1/2 and V = |S|1/2. Then U and V both
are Hilbert-Schmidt operators and S = UV .
(4) ⇒ (1). Suppose S = UV where U, V ∈ C 2(H). If S = T |S| be polar decom-
position of S, then |S| = T ∗S = T ∗(UV ) = (T ∗U)V . Let Eα be any orthonormal
basis of Hα for every α ∈ Λ. Then by Corollary 5.8

∑
ζ∈Eα

(|Sα|(ζ), ζ)α < ∞ for

every α ∈ Λ. Thus p1,α(S) < ∞ for every α ∈ Λ.

Proposition 5.10. Let T, S ∈ L(H) and λ ∈ C. Then the following holds:

(1) p1,α(T + S) ≤ p1,α(T ) + p1,α(S) and p1,α(λT ) = |λ|p1,α(T ).
(2) p1,α(T ) = p1,α(T

∗).
(3) pα(T ) ≤ p1,α(T ).
(4) p1,α(TS) ≤ pα(T )p1,α(S) and p1,α(TS) ≤ p1,α(T )pα(S).

Proof. Proof is straight forward verification followed by the fact that p1,α(T ) is
trace class norm of Tα in BL(Hα).

The following shows that the analogue of the trace class operators in our set
up is a complete lmc ∗-algebra.

Theorem 5.11. C 1(H) is complete lmc ∗-algebra with respect to the topology
generated by the family of trace class seminorms {p1,α}α∈Λ.

Proof. From Proposition 5.10, it is clear that p1,α is a submultiplicative ∗-
seminorm on C 1(H) for every α ∈ Λ and hence it is an lmc ∗-algebra with
respect to the topology generated by the family {p1,α}α∈Λ of trace class semi-
norms. To prove completeness of C 1(H), let (Ti)i∈I be a Cauchy net in C 1(H)
and α ∈ Λ. Then (Tiα = Ti|Hα

) is a Cauchy net in C 1(Hα). Since C 1(Hα)
is complete, there exists T(α) ∈ C 1(Hα) such that ∥Tiα − T(α)∥1,α → 0. Also,

∥Tiα − T(α)∥ ≤ ∥Tiα − T(α)∥1,α shows that (Tiα)i∈I is a net in L(H)α which con-

verges to T(α) ∈ BL(Hα). Since L(H)α is complete, T(α) ∈ L(H)α. Thus for each
α ∈ Λ we have T(α) ∈ L(H)α. Thus there exists unique T ∈ L(H) such that
Tα = T(α). Now, p1,α(T ) = ∥Tα∥1,α = ∥T(α)∥1,α < ∞ for every α ∈ Λ showing

that T ∈ C 1(H). This completes the proof.

Let N1,α = {T ∈ C 1(H) : p1,α(T ) = 0}. Then it can be readily seen that N1,α

is closed ∗-ideal in C 1(H). Also, C 1(H)/N1,α ↪→ C 1(Hα) via θ1,α, where θ1,α(T +
N1,α) = Tα. Here θ1,α is well defined as N1,α ⊂ Nα and a ∗-homomorphism.
Denote the closure of θ1,α(C 2(H)/N1,α) in C 1(Hα) by C 1(H)α. From Arens-
Michael decomposition we have C 1(H) = lim←−−

α∈Λ
(C 1(H)α, ∥ · ∥1,α).
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Proposition 5.12. F (H) ⊂ C 1(H), where F (H) is the set of all finite rank
operators of L(H).

Proof. It is enough to show that C 1(H) contains every rank one operator of
L(H). Let T = ξβ ⊗ ηβ, ξβ, ηβ ∈ Kβ, β ∈ Λ be any rank one operator. Let Eα

be an orthonormal basis for Eα, α ∈ Λ. Then

p1,α(T ) =

{
∥ξβ∥Hβ

∥ηβ∥Hβ
, if β ≤ α

0 otherwise .

Thus, p1,α(T ) < ∞ for every α ∈ Λ.

Remark 5.13. F (H) is a ∗-ideal of C 1(H).

The proof of the following lemma is based on the arguments similar to that
in the proof of Theorem 5.5.

Lemma 5.14. F (H) is dense in C 1(H) with respect to the topology generated
by the family {p1,α}α∈Λ.

6. Conclusion

The preceding discussion shows that

F (H) ⊂ C 1(H) ⊂ C 2(H) ⊂ K(H) ⊂ L(H).

In fact, this chain of inclusions is a non-commutative unbounded analogue of
the classical case, c00 ⊂ ℓ1 ⊂ ℓ2 ⊂ c0 ⊂ ℓ∞ inclusion. All these algebras
are in fact complete lmc ∗-algebras. We conclude from the Example 2.4 that
C 2(H)α,C 1(H)α, K(H)α properly sitting in C 2(Hα),C 1(Hα) and K(Hα) re-
spectively, as dim(H) < ∞ which proves that in general C 2(H),C 1(H), K(H)
is not an inverse limit of C 2(Hα),C 1(Hα) and K(Hα), α ∈ Λ, respectively.
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