STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

BACHELOR OF VOCATIONAL (B.Voc.) PROGRAMME SUSTAINABLE ENERGY MANAGEMENT

SYLLABUS

(Effective from the academic year 2016 - 2017)

FORMS OF ENERGY AND ENERGY CRISIS

CODE:16VS/VM/FC16

CREDITS: 6 L T P: 303 **TOTAL TEACHING HOURS: 78**

OBJECTIVES OF THE COURSE

- To understand the various forms of energy
- To get an insight of energy crisis and energy conservation practices

Unit 1

Forms of Energy

- Introduction various forms of energy thermal, sound, light electrical, 1.1 magnetic, chemical, nuclear, mechanical, Elastic, Gravitational energy
- Types of energy sources Renewable Non Renewable sources 1.2

Unit 2

Energy Consumption and Demand

- 2.1 Energy consumption – energy consumption(per capita) and economic growth
- 2.2 Global energy consumption – Energy demand – primary energy demand and cumulative energy demand

Unit 3

Energy Resources

- 3.1 Energy routes for non-renewable energy resources – age of renewables and alternatives
- 3.2 Energy developments - energy requirements and future prospects

Unit 4

Energy Crisis its Causes and Solutions

- Introduction: Causes of energy crisis: Over consumption, over population, 4.1 infrastructure Unexplored Renewable Energy Options - Commissioning of Power Plants
- 4.2 Moving toward renewable energy sources – energy conservation practices Technology up gradation and strategies to meet energy requirements

Unit 5

Site Analysis: Fundamental Energy Calculations and work place safety

Energy calculations: units and conversion dimensional equations – Joules, 5.1 kWh/units

(10hrs.)

(10hrs.)

(10hrs.)

(9hrs.)

(**39hrs.**)

- 5.2 Energy crisis: Global scenario Energy crisis of developing countries Report
- 5.3 Energy storage Various energy storage systems and Energy savings Comparative study of power consumption in electrical appliances
- 5.4 Basic First aid & Safety at work place

BOOK FOR STUDY AND REFERENCE

Rao. S and Parulakar . B.B, Energy Technology, New Delhi: Khanna Publishers, 1997

Sastri . M.M., *Energy Sources, resources and options*, Mumbai: Himalaya Publishing House, 1994

Thipse. S.S. *Non- Conventional and Renewable energy sources*, New Delhi: Narosa Publishing House, 2014

PATTERN OF EVALUATION

Continuous Assessment: 25 marks

End Semester: 75 marks

The students will be taking one C.A. test and additional Skill sets training practical component which may include practical work, assignments, project work, any other.

I. C.A. Test for 3 hours **50 marks**, comprising of Theory (25marks) and Practical (25marks), both to be done in the laboratory. **The final marks to be converted to 25**

C.A. Test Pattern for theory: (25marks) Section A – Objective/ definition/ fill in the blanks- $10 \ge 10$ marks (to be collected after 10 minutes) Section B – 3 out of 5 - 3 ≥ 3 = 9 marks Section C – 1 out of 2 - 1 ≥ 6 marks Practical: 25 marks

II. Continuous Assessment of Skill sets training - practical work: **25 marks** – Aggregate of all practical assessment

End Semester Examination (Total 100 marks to be converted to 75 marks)Total Marks: 100Duration: 6 hoursTheory: 50 MarksPractical: 50 Marks(Both theory and practical to be done in the laboratory).

Pattern for Theory: 50 marks

Section A – Objective/ definition/ fill in the blanks- $20 \ge 1 = 20$ marks (to be collected at the end of 20 minutes) Section B – 6 out of 10 - 6 $\ge 3 = 18$ marks Section C – 2 out of 4 - $2 \ge 6 = 12$ marks **Practical: 50 marks**

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

BACHELOR OF VOCATIONAL (B.Voc.) PROGRAMME SUSTAINABLE ENERGY MANAGEMENT

SYLLABUS

(Effective from the academic year 2016 - 2017)

SOLAR ENERGY

CODE:16VS/VM/SE16

CREDITS: 6 LTP:303 **TOTAL TEACHING HOURS: 78**

OBJECTIVES OF THE COURSE

- To understand various concepts in utilization of Solar energy
- To learn the merits of solar energy for variety of applications

Unit 1

Introduction to Solar Energy

- Fundamentals of Solar Radiation The Nature of Solar Radiation Radiation 1.1 on Earth's Surface – Sun path Chart
- Historical Perspective Solar Energy; Obstacles and Outlook Global and 1.2 Indian solar energy scenario - Potential and power generation

Unit 2

Solar energy conversion

- Photovoltaics Principles Physics and operation of 2.1 solar cells
- 2.2 Solar panels Solar power plants
- 2.3 Various parameters and work safety for solar PV installation

Unit 3

Solar collectors

- 3.1 Fundamentals of solar collectors as devices to convert solar energy to heat. Design and structure of collectors for heating liquids and air.
- 3.2 Solar concentrating collectors Sun tracking mechanisms Solar mapping

Unit 4

Applications

- Solar thermo-mechanical refrigeration system-Solar systems for process heat 4.1 production – Solar cooking – Performance and testing of solar cookers – Power generation - drying
- 4.2 Solar pond Solar greenhouse Solar Pumping Solar Distillation

Unit 5

Case Study

- 5.1 Solar panel experiment and study of Solar photovoltaic cells-IV characteristics.
- Solar energy spectrum calculation of Rydberg's constant. 5.2
- Solar cell fabrication. 5.3

(10hrs.)

(9hrs.)

(39hrs.)

(10hrs.)

(10hrs.)

BOOKS FOR STUDY AND REFRENCE

Agarwal. Solar Energy., New Delhi: S.Chand & Company Ltd., 1983

Thipse S.S. *Non-Conventional Energy and Renewable Energy Sources*, Narosa Publishing House, 2014

Garg H.P. Prakash J. "Solar Energy Fundamentals and Applications", Tata McGraw-Hill, 2005.

B. H. Khan. *Non-Conventional Energy Resources*, Second Edition. Tata McGraw Hill Education Private Limited, 2012.

G.D. Rai, Solar Energy Utilization, 5th edition. Khanna Publishers, 2010.

Sukatme. Solar Energy, Tata McGraw Hill Publishing company Ltd., 1996.

PATTERN OF EVALUATION

Continuous Assessment: 25 marks

The students will be taking one C.A. test and additional Skill sets training practical component which may include practical work, assignments, project work, any other.

I. C.A. Test for 3 hours **50 marks**, comprising of Theory (25marks) and Practical (25marks), both to be done in the laboratory. **The final marks to be converted to 25**

C.A. Test Pattern for theory: (25marks)

Section A – Objective/ definition/ fill in the blanks- 10x1=10 marks (to be collected after 10 minutes)

Section B - 3 out of 5 - 3 x 3 = 9 marks

Section C - 1 out of 2 $- 1 \ge 6$ marks

Practical: 25 marks

II. Continuous Assessment of Skill sets training - practical work: **25 marks** – Aggregate of all practical assessment

End Semester Examination (Total 100 marks to be converted to 75 marks)

Total Marks: 100Duration: 6 hoursTheory: 50 MarksPractical: 50 Marks(Both theory and practical to be done in the laboratory).Practical: 50 Marks

Pattern for Theory: 50 marks

Section A – Objective/ definition/ fill in the blanks- $20 \ge 1=20$ marks (to be collected at the end of 20 minutes) Section B – 6 out of 10 - 6 $\ge 3 = 18$ marks Section C – 2 out of 4 - $2 \ge 6 = 12$ marks **Practical: 50 marks**

End Semester: 75 marks

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

BACHELOR OF VOCATIONAL (B.Voc.) PROGRAMME SUSTAINABLE ENERGY MANAGEMENT

SYLLABUS

(Effective from the academic year 2016 - 2017)

ENERGY ECONOMICS

CODE:16VS/VA/EE15

CREDITS: 5 LTP:500 **TOTAL TEACHING HOURS: 65**

OBJECTIVES OF THE COURSE

- > To develop in the students an awareness of the basic issues and problems relating to the Energy Economics
- > To help in critically analysing the energy market in the Indian context

Unit 1

Introduction to Micro Economics Concepts

- 1.1 Supply and Demand – Applying supply and demand - elasticity
- Consumer theory Preference and utility- Budget Constraints- Deriving 1.2 **Demand Curve**
- 1.3 Producer Theory - Productivity and costs - competition
- Monopoly and Oligopoly 1.4
- Equity and Efficiency 1.5

Unit 2

Introduction to Sustainable Energy

- Historical Context post industrialization- growth of the developed countries 2.1 and growing energy needs of less developed countries
- Overview of energy use and related issues 2.2
- Global climate change issues and responses Greenhouse gas emissions and 2.3 potential effects – effect on ecology and biodiversity- Responses to CO₂ build up - Mitigation - Policy - Carbon tax- Command and Control
- Sustainability, energy and clean technologies Sustainability attributes-2.4 population and consumption growth - Tradeoffs and choices- Uncertainty

Unit 3

Energy Decision, Markets

- 3.1 Natural Gas Introduction to Natural gas markets- Future
- 3.2 Electricity, Coal, Renewable Energy, Nuclear power Prospects and Future

Unit 4

Energy Policies

- 4.1 Future of global energy, Climate Change Understanding public complacency
- 4.2 Energy supply and economics of depletable resources, Energy Security Clean Energy – Energy paradox

(13hrs.)

(13hrs.)

(13 hrs.)

(13 hrs.)

- 4.3 Pollution Control
- 4.4 Public Policies- Indian Environmental Policies Social Movements energy efficiency policies renewable energy policies Regulations- Emission trading

Unit 5 Energy Management & Case Study (13 hrs.)

- 5.1 Energy use by individuals and households energy calculator energy consumption
- 5.2 Industry Power management

BOOKS FOR REFERENCE

Banks F.E. *Energy Economics: A Modern introduction*, Kluwer Academic Publishers Dordrecht 2000.

Griffin J.M. and H.B. Steele. Energy Economics and Policy, Academic, Orlando, 1986

Hussen. Ahmed.M. Principles of Environmental Economics: Economics, Ecology and Public Sector. London: Routledge.1999.

Kolestad. Charles D. Environmental Economics, New York: Oxford University Press. 2000.

Singh, Katar. And Shishodia. Anil. *Environmental Economics: An Indian Perspectives*. New Delhi: Oxford University Press. 2007.

PATTERN OF EVALUATION

Continuous Assessment: 25 marks

End Semester: 75 marks

The students will be taking one C.A. test and additional Skill sets training component which may include activities, case studies, assignments, project work, any other.

I. C.A. Test for 1 ¹/₂ hours 50 marks, comprising of only Theory. To be converted to 25

C.A. Test Pattern:

Section A – Objective/ definition/ fill in the blanks- 15x1=15 marks (to be collected after 15minutes) Section B – 3 out of 5 - 3 x 5 = 15 marks Section C – 1 out of 2 - 1 x 20= 20 marks

II.Continuous assessment of skill sets activities, Assignment, Quiz etc.: 25 marks End Semester Examination (Total 100 marks will be converted to 75 marks)

Total Marks: 100Duration: 3 hoursSection A – Objective/ definition/ fill in the blanks- $30 \times 1=30$ marks (to be collected after30 minutes)Section B –6 out of 8 - 6 x 5 = 30 marksSection C –2 out of 4 - 2 x20 = 40 marks