STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16)

SUBJECT CODE : 15MT/PC/TO34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE	
PAPER	: TOPOLOGY	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A

ANSWER ALL THE QUESTIONS:

- 1. Write down a collection of subsets of $X = \{1,2,3\}$ which is not a topology on X.
- 2. Define a locally connected topological space.
- 3. Define a Lebesgue number for an open covering of a metric space.
- 4. Define a second countable space.
- 5. Define a homeomorphism.

.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

6. Let X be a topological space. Suppose that \mathbb{C} is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of \mathbb{C} such that $x \in C \subset U$, then show that \mathbb{C} is a basis for the topology on X.

- 7. Prove that the image of a connected space under a continuous map is connected.
- 8. Prove that every closed subspace of a compact space is compact.
- 9. Prove that every metrizable space is normal.
- 10. State and prove Pasting lemma.
- 11. Let *Y* be a subspace of *X* and *A* be a subset of *Y*. If \overline{A} denotes the closure of A in *X*, then prove that the closure of *A* in *Y* equals $\overline{A} \cap Y$.
- 12. State and prove extreme value theorem.

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

 $(3 \times 20 = 60)$

SECTION – C

ANSWER ANY THREE QUESTIONS:

- 13. a) Let \mathbb{B} and \mathbb{B}' be bases for the topologies τ and τ' respectively on *X*. Prove that the following are equivalent.
 - i) τ' is finer than τ .

ii) For each $x \in X$ each element $B \in \mathbb{B}$ containing x, there is an $B' \in \mathbb{B}'$ such that $x \in \mathbb{B}' \subset \mathbb{B}$.

b) If Y is a subspace of X, then show that a set A is closed in Y if and only if itequals the intersection of a closed set of X with Y.

14. a) If L is a linear continuum in the order topology then prove that L is connected.

b) Prove that a space X is locally connected if and only if for every open setUofX, each component ofU is open isX.

15. Prove that the product of finitely many compact spaces is compact.

- 16. State and prove Urysohn'smetrization theorem.
- 17. a) If X and Y are topological spaces and if $f: X \rightarrow Y$ then show that the following are equivalent.
 - i) f is continuous.
 - ii) for every subset A of X, we have $f(\overline{A}) \subset \overline{f(A)}$.
 - iii) for every closed set BofY the set $f^1(B)$ is closed in X.

b) Let $\{X_{\alpha}\}$ be an indexed family of spaces, and let $A_{\alpha} \subset X_{\alpha}$ for each α . If πX_{α} is given either in the product or box topology, thenshow that $\Pi \overline{A}_{\alpha} = \overline{\Pi A_{\alpha}}$.
