STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2015-16\& thereafter)SUBJECT CODE : 15MT/PC/MA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2016
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	:
PORE	
PAPER	$:$ MODERN ALGEBRA
TIME	$:$

SECTION - A
ANSWER ALL THE QUESTIONS:

1. Show that the conjugacy relation defined on a group is an equivalence relation.
2. Define a Euclidean ring.
3. If $f(x), g(x)$ are nonzero elements in $F[x]$ thenprove that $\operatorname{deg} f(x) \leq \operatorname{deg} f(x) g(x)$.
4. When do you say that a root of a polynomial is of multiplicity m ?
5. Define solvable group.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. If p is a prime number and $p / o(G)$ then prove that G has an element of order p.
7. Suppose that G is the internal direct product of $N_{1}, \ldots \ldots \ldots \ldots \ldots, N_{n}$. Then prove that for $i \neq j, N_{i} \cap N_{j}=(e)$, and if $a \in N_{i}, b \in N_{j}$ then $a b=b a$.
8. State and prove Fermat's theorem.
9. State and prove the Division Algorithm.
10. Let $f(x) \in F[x]$ be of degree $n \geq 1$. Then prove that there is an extension E of F of degree at most n ! in which $f(x)$ has n roots.
11. For any $f(x), g(x) \in F[x]$ and any $\alpha \in F$, prove that
(i) $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
(ii) $(\alpha f(x))^{\prime}=\alpha f^{\prime}(x)$
(iii) $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
12. If K is the field of complex numbers and F is the field of real numbers, compute $G(K, F)$ and what is the fixed field of $G(K, F)$.

SECTION - C

ANSWER ANY THREE QUESTIONS:
$(3 \times 20=60)$
13. State and prove Sylow's theorem.
14. a) Prove that $J[i]$ is a Euclidean ring.
b) Find all the units in $J[i]$.
c) If $a+b i$ is not a unit of $J[i]$ prove that $a^{2}+b^{2}>1$.
15. a) State and prove Gauss' Lemma.
b) State and prove The Eisentein Criterion.
c)Prove that the polynomial $1+x+\cdots \ldots+x^{p-1}$, where p is a prime number, is irreducible over the field of rational numbers. $(6+8+6)$
16. a) Prove that the element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.
b) If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.
17. a) If F is of characteristic 0 and if a, b are algebraic over F, then prove that there exists an element $c \in F(a, b)$ such that $F(a, b)=F(c)$.
b) If K is a field and if $\sigma_{1}, \ldots \ldots, \sigma_{n}$ are distinct automorphismsof K, then prove that it isimpossible to find elements $a_{1}, \ldots \ldots, a_{n}$, not all 0 , in K such that $a_{1} \sigma_{1}(u)+a_{2} \sigma_{2}(u)+\ldots . .+a_{n} \sigma_{n}(u)=0$ for all $u \in K$.

AAAAAAAAAA

