STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE: 15MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2016
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	$:$ CORE
PAPER	$:$ GRAPH THEORY
TIME	$:$

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

$(5 \times 2=10)$

ANSWER ALL THE QUESTIONS

1. Define automorphism of a graph.
2. Define domination number of a graph.
3. Prove that in a critical graph, no vertex cut is a clique.
4. State Kuratowski's theorem.
5. Define dilation of the embedding.

SECTION - B
$(5 \times 6=30)$

ANSWER ANY FIVE QUESTIONS

6. If G is a tree, Prove that $\varepsilon=v-1$.
7. Let T be a spanning tree of a connected graph G, and let e be any edge of T. Prove that
(i) thecotree \bar{T} contains no bond of G;
(ii) $\bar{T}+e$ contains a unique bond of G.
8. If G is a k-regular bipartite graph with $k>0$, Prove that G has a perfect matching.
9. Calculate the chromatic polynomial of the following graph.

10. If G is a connected plane graph, Prove that $v-\varepsilon+\phi=2$.
11. Prove that a loopless digraph D has an independent set S such that each vertex of D not in S is reachable from a vertex in S by a directed path of length at most two.
12. State some fundamental properties of hypercube networks.

SECTION - C

$(\mathbf{3} \times 20=60)$

ANSWER ANY THREE QUESTIONS

13. a) Prove that a graph is bipartite if and only if it contains no odd cycle.
b) Prove that a vertex v of a tree G is a cut vertex of G if and only if $d(v)>1$.
14. a) With usual notations, Prove that $\kappa \leq \kappa^{\prime} \leq \delta$.
b) In a bipartite graph G with $\delta>0$, Prove that the number of vertices in a maximum independent set is equal to the number of edges in a minimum edge covering.

$$
(10+10)
$$

15. a) State and prove Brooks' theorem.
b) If G is a simple, Prove that either $\chi^{\prime}=\Delta$ or $\chi^{\prime}=\Delta+1$.
16. a) State and prove the five colour theorem.
b) Prove that a digraph contains a directed path of length $\chi-1$.
17. a) Explain any four basic principles of network design.
b) Draw de Bruijn digraph $B(2,3)$ and Kautz digraph $K(2,3)$.
c) Define circulant digraph and state any four of its properties.

$$
(8+6+6)
$$

achacacala

