STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16)

SUBJECT CODE: 15MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : CORE

PAPER : GRAPH THEORY

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A (5 X 2 = 10)

ANSWER ALL THE QUESTIONS

1. Define automorphism of a graph.

- 2. Define domination number of a graph.
- 3. Prove that in a critical graph, no vertex cut is a clique.
- 4. State Kuratowski's theorem.
- 5. Define dilation of the embedding.

 $SECTION - B \qquad (5 \times 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. If G is a tree, Prove that $\varepsilon = v 1$.
- 7. Let T be a spanning tree of a connected graph G, and let e be any edge of T. Prove that
 - (i) the cotree \bar{T} contains no bond of G;
 - (ii) \bar{T} + econtains a unique bond of G.
- 8. If G is a k-regular bipartite graph with k > 0, Prove that G has a perfect matching.
- 9. Calculate the chromatic polynomial of the following graph.

- 10. If G is a connected plane graph, Prove that $v \varepsilon + \phi = 2$.
- 11. Prove that a loopless digraph D has an independent set S such that each vertex of D not in S is reachable from a vertex in S by a directed path of length at most two.
- 12. State some fundamental properties of hypercube networks.

$SECTION - C \qquad (3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 13. a) Prove that a graph is bipartite if and only if it contains no odd cycle.
 - b) Prove that a vertex v of a tree G is a cut vertex of G if and only if d(v) > 1.

(10 + 10)

- 14. a) With usual notations, Prove that $\kappa \leq \kappa' \leq \delta$.
 - b) In a bipartite graph G with $\delta > 0$, Prove that the number of vertices in a maximum independent set is equal to the number of edges in a minimum edge covering.

(10 + 10)

- 15. a) State and prove Brooks' theorem.
 - b) If G is a simple, Prove that either $\chi' = \Delta$ or $\chi' = \Delta + 1$.

(12 + 8)

- 16. a) State and prove the five colour theorem.
 - b) Prove that a digraph contains a directed path of length $\chi 1$.

(12 + 8)

- 17. a) Explain any four basic principles of network design.
 - b) Draw de Bruijn digraph B(2, 3) and Kautz digraph K(2, 3).
 - c) Define circulant digraph and state any four of its properties.

(8+6+6)

